• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards real-time image understanding with convolutional networks / Analyse sémantique des images en temps-réel avec des réseaux convolutifs

Farabet, Clément 18 December 2013 (has links)
One of the open questions of artificial computer vision is how to produce good internal representations of the visual world. What sort of internal representation would allow an artificial vision system to detect and classify objects into categories, independently of pose, scale, illumination, conformation, and clutter ? More interestingly, how could an artificial vision system {em learn} appropriate internal representations automatically, the way animals and humans seem to learn by simply looking at the world ? Another related question is that of computational tractability, and more precisely that of computational efficiency. Given a good visual representation, how efficiently can it be trained, and used to encode new sensorial data. Efficiency has several dimensions: power requirements, processing speed, and memory usage. In this thesis I present three new contributions to the field of computer vision:(1) a multiscale deep convolutional network architecture to easily capture long-distance relationships between input variables in image data, (2) a tree-based algorithm to efficiently explore multiple segmentation candidates, to produce maximally confident semantic segmentations of images,(3) a custom dataflow computer architecture optimized for the computation of convolutional networks, and similarly dense image processing models. All three contributions were produced with the common goal of getting us closer to real-time image understanding. Scene parsing consists in labeling each pixel in an image with the category of the object it belongs to. In the first part of this thesis, I propose a method that uses a multiscale convolutional network trained from raw pixels to extract dense feature vectors that encode regions of multiple sizes centered on each pixel. The method alleviates the need for engineered features. In parallel to feature extraction, a tree of segments is computed from a graph of pixel dissimilarities. The feature vectors associated with the segments covered by each node in the tree are aggregated and fed to a classifier which produces an estimate of the distribution of object categories contained in the segment. A subset of tree nodes that cover the image are then selected so as to maximize the average "purity" of the class distributions, hence maximizing the overall likelihood that each segment contains a single object (...) / One of the open questions of artificial computer vision is how to produce good internal representations of the visual world. What sort of internal representation would allow an artificial vision system to detect and classify objects into categories, independently of pose, scale, illumination, conformation, and clutter ? More interestingly, how could an artificial vision system {em learn} appropriate internal representations automatically, the way animals and humans seem to learn by simply looking at the world ? Another related question is that of computational tractability, and more precisely that of computational efficiency. Given a good visual representation, how efficiently can it be trained, and used to encode new sensorial data. Efficiency has several dimensions: power requirements, processing speed, and memory usage. In this thesis I present three new contributions to the field of computer vision:(1) a multiscale deep convolutional network architecture to easily capture long-distance relationships between input variables in image data, (2) a tree-based algorithm to efficiently explore multiple segmentation candidates, to produce maximally confident semantic segmentations of images,(3) a custom dataflow computer architecture optimized for the computation of convolutional networks, and similarly dense image processing models. All three contributions were produced with the common goal of getting us closer to real-time image understanding. Scene parsing consists in labeling each pixel in an image with the category of the object it belongs to. In the first part of this thesis, I propose a method that uses a multiscale convolutional network trained from raw pixels to extract dense feature vectors that encode regions of multiple sizes centered on each pixel. The method alleviates the need for engineered features. In parallel to feature extraction, a tree of segments is computed from a graph of pixel dissimilarities. The feature vectors associated with the segments covered by each node in the tree are aggregated and fed to a classifier which produces an estimate of the distribution of object categories contained in the segment. A subset of tree nodes that cover the image are then selected so as to maximize the average "purity" of the class distributions, hence maximizing the overall likelihood that each segment contains a single object. The system yields record accuracies on several public benchmarks. The computation of convolutional networks, and related models heavily relies on a set of basic operators that are particularly fit for dedicated hardware implementations. In the second part of this thesis I introduce a scalable dataflow hardware architecture optimized for the computation of general-purpose vision algorithms, neuFlow, and a dataflow compiler, luaFlow, that transforms high-level flow-graph representations of these algorithms into machine code for neuFlow. This system was designed with the goal of providing real-time detection, categorization and localization of objects in complex scenes, while consuming 10 Watts when implemented on a Xilinx Virtex 6 FPGA platform, or about ten times less than a laptop computer, and producing speedups of up to 100 times in real-world applications (results from 2011)
2

Analyse sémantique des images en temps-réel avec des réseaux convolutifs

Farabet, Clément 19 December 2013 (has links) (PDF)
Une des questions centrales de la vision informatique est celle de la conception et apprentissage de représentations du monde visuel. Quel type de représentation peut permettre à un système de vision artificielle de détecter et classifier les objects en catégories, indépendamment de leur pose, échelle, illumination, et obstruction. Plus intéressant encore, comment est-ce qu'un tel système peut apprendre cette représentation de façon automatisée, de la même manière que les animaux et humains parviennent à émerger une représentation du monde qui les entoure. Une question liée est celle de la faisabilité calculatoire, et plus précisément celle de l'efficacité calculatoire. Étant donné un modèle visuel, avec quelle efficacité peut-il être entrainé, et appliqué à de nouvelles données sensorielles. Cette efficacité a plusieurs dimensions: l'énergie consommée, la vitesse de calcul, et l'utilisation mémoire. Dans cette thèse je présente trois contributions à la vision informatique: (1) une nouvelle architecture de réseau convolutif profond multi-échelle, permettant de capturer des relations longue distance entre variables d'entrée dans des données type image, (2) un algorithme à base d'arbres permettant d'explorer de multiples candidats de segmentation, pour produire une segmentation sémantique avec confiance maximale, (3) une architecture de processeur dataflow optimisée pour le calcul de réseaux convolutifs profonds. Ces trois contributions ont été produites dans le but d'améliorer l'état de l'art dans le domain de l'analyse sémantique des images, avec une emphase sur l'efficacité calculatoire. L'analyse de scènes (scene parsing) consiste à étiqueter chaque pixel d'une image avec la catégorie de l'objet auquel il appartient. Dans la première partie de cette thèse, je propose une méthode qui utilise un réseau convolutif profond, entrainé à même les pixels, pour extraire des vecteurs de caractéristiques (features) qui encodent des régions de plusieurs résolutions, centrées sur chaque pixel. Cette méthode permet d'éviter l'usage de caractéristiques créées manuellement. Ces caractéristiques étant multi-échelle, elles permettent au modèle de capturer des relations locales et globales à la scène. En parallèle, un arbre de composants de segmentation est calculé à partir de graphe de dis-similarité des pixels. Les vecteurs de caractéristiques associés à chaque noeud de l'arbre sont agrégés, et utilisés pour entrainé un estimateur de la distribution des catégories d'objets présents dans ce segment. Un sous-ensemble des noeuds de l'arbre, couvrant l'image, est ensuite sélectionné de façon à maximiser la pureté moyenne des distributions de classes. En maximisant cette pureté, la probabilité que chaque composant ne contienne qu'un objet est maximisée. Le système global produit une précision record sur plusieurs benchmarks publics. Le calcul de réseaux convolutifs profonds ne dépend que de quelques opérateurs de base, qui sont particulièrement adaptés à une implémentation hardware dédiée. Dans la deuxième partie de cette thèse, je présente une architecture de processeur dataflow dédiée et optimisée pour le calcul de systèmes de vision à base de réseaux convolutifs--neuFlow--et un compilateur--luaFlow--dont le rôle est de compiler une description haut-niveau (type graphe) de réseaux convolutifs pour produire un flot de données et calculs optimal pour l'architecture. Ce système a été développé pour faire de la détection, catégorisation et localisation d'objets en temps réel, dans des scènes complexes, en ne consommant que 10 Watts, avec une implémentation FPGA standard.
3

Estimation de pose 2D par réseau convolutif

Huppé, Samuel 04 1900 (has links)
Magic: The Gathering} est un jeu de cartes à collectionner stochastique à information imparfaite inventé par Richard Garfield en 1993. Le but de ce projet est de proposer un pipeline d'apprentissage machine permettant d'accomplir la détection et la localisation des cartes du jeu \textit{Magic} au sein d'une image typique des tournois de ce jeu. Il s'agit d'un problème de pose d'objets 2D à quatre degrés de liberté soit, la position sur deux axes, la rotation et l'échelle, dans un contexte où les cartes peuvent être superposées. À travers ce projet, nous avons développé une approche par données synthétiques à deux réseaux capable, collectivement d'identifier, et de régresser ces paramètres avec une précision significative. Dans le cadre de ce projet, nous avons développé un algorithme d'apprentissage profond par données synthétiques capable de positionner une carte avec une précision d'un demi pixel et d'une rotation de moins d'un degré. Finalement, nous avons montré que notre jeu de données synthétique est suffisamment réaliste pour permettre à nos réseaux de généraliser aux cas d'images réelles. / Magic: The Gathering} is an imperfect information, stochastic, collectible card game invented by Richard Garfield in 1993. The goal of this project is to propose a machine learning pipeline capable of detecting and localising \textit{Magic} cards within an image. This is a 2D pose problem with 4 degrees of freedom, namely translation in $x$ and $y$, rotation, and scale, in a context where cards can be superimposed on one another. We tackle this problem by relying on deep learning using a combination of two separate neural networks. Our final pipeline has the ability to tackle real-world images and gives, with a very good degree of precision, the poses of cards within an image. Through the course of this project, we have developped a method of realistic synthetic data generation to train both our models to tackle real world images. The results show that our pose subnetwork is able to predict position within half a pixel, rotation within one degree and scale within 2 percent.

Page generated in 0.0459 seconds