• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Attributed Network Clustering : Application to recommender systems / Clustering dans les réseaux attribués : Application aux systèmes de recommandation

Falih, Issam 08 March 2018 (has links)
Au cours de la dernière décennie, les réseaux (les graphes) se sont révélés être un outil efficace pour modéliser des systèmes complexes. La problématique de détection de communautés est une tâche centrale dans l’analyse des réseaux complexes. La majeur partie des travaux dans ce domaine s’intéresse à la structure topologique des réseaux. Cependant, dans plusieurs cas réels, les réseaux complexes ont un ensemble d’attributs associés aux nœuds et/ou aux liens. Ces réseaux sont dites : réseaux attribués. Mes activités de recherche sont basées principalement sur la détection des communautés dans les réseaux attribués. Pour aborder ce problème, on s’est intéressé dans un premier temps aux attributs relatifs aux liens, qui sont un cas particulier des réseaux multiplexes. Un multiplex est un modèle de graphe multi-relationnel. Il est souvent représenté par un graphe multi-couches. Chaque couche contient le même ensemble de nœuds mais encode une relation différente. Dans mes travaux de recherche, nous proposons une étude comparative des différentes approches de détection de communautés dans les réseaux multiplexes. Cette étude est faite sur des réseaux réels. Nous proposons une nouvelle approche centrée "graine" pour la détection de communautés dans les graphes multiplexes qui a nécessité la redéfinition des métriques de bases des réseaux complexes au cas multiplex. Puis, nous proposons une approche de clustering dans les réseaux attribués qui prend en considération à la fois les attributs sur les nœuds et sur les liens. La validation de mes approches a été faite avec des indices internes et externes, mais aussi par une validation guidée par un système de recommandation que nous avons proposé et dont la détection de communautés est sa tâche principale. Les résultats obtenus sur ces approches permettent d’améliorer la qualité des communautés détectées en prenant en compte les informations sur les attributs du réseaux. De plus, nous offrons des outils d’analyse des réseaux attribués sous le langage de programmation R. / In complex networks analysis field, much effort has been focused on identifying graphs communities of related nodes with dense internal connections and few external connections. In addition to node connectivity information that are mostly composed by different types of links, most real-world networks contains also node and/or edge associated attributes which can be very relevant during the learning process to find out the groups of nodes i.e. communities. In this case, two types of information are available : graph data to represent the relationship between objects and attributes information to characterize the objects i.e nodes. Classic community detection and data clustering techniques handle either one of the two types but not both. Consequently, the resultant clustering may not only miss important information but also lead to inaccurate findings. Therefore, various methods have been developed to uncover communities in networks by combining structural and attribute information such that nodes in a community are not only densely connected, but also share similar attribute values. Such graph-shape data is often referred to as attributed graph.This thesis focuses on developing algorithms and models for attributed graphs. Specifically, I focus in the first part on the different types of edges which represent different types of relations between vertices. I proposed a new clustering algorithms and I also present a redefinition of principal metrics that deals with this type of networks.Then, I tackle the problem of clustering using the node attribute information by describing a new original community detection algorithm that uncover communities in node attributed networks which use structural and attribute information simultaneously. At last, I proposed a collaborative filtering model in which I applied the proposed clustering algorithms.
2

Une approche pour estimer l'influence dans les réseaux complexes : application au réseau social Twitter / An approach for influence estimatation in complex networks : application to the social network Twitter

Azaza, Lobna 23 May 2019 (has links)
L'étude de l'influence sur les réseaux sociaux et en particulier Twitter est un sujet de recherche intense. La détection des utilisateurs influents dans un réseau est une clé de succès pour parvenir à une diffusion d'information à large échelle et à faible coût, ce qui s'avère très utile dans le marketing ou les campagnes politiques. Dans cette thèse, nous proposons une nouvelle approche qui tient compte de la variété des relations entre utilisateurs afin d'estimer l'influence dans les réseaux sociaux tels que Twitter. Nous modélisons Twitter comme un réseau multiplexe hétérogène où les utilisateurs, les tweets et les objets représentent les noeuds, et les liens modélisent les différentes relations entre eux (par exemple, retweets, mentions et réponses). Le PageRank multiplexe est appliqué aux données issues de deux corpus relatifs au domaine politique pour classer les candidats selon leur influence. Si le classement des candidats reflète la réalité, les scores de PageRank multiplexe sont difficiles à interpréter car ils sont très proches les uns des autres.Ainsi, nous voulons aller au-delà d'une mesure quantitative et nous explorons comment les différentes relations entre les noeuds du réseau peuvent déterminer un degré d'influence pondéré par une estimation de la crédibilité. Nous proposons une approche, TwitBelief, basée sur la règle de combinaison conjonctive de la théorie des fonctions de croyance qui permet de combiner différents types de relations tout en exprimant l’incertitude sur leur importance relative. Nous expérimentons TwitBelief sur une grande quantité de données collectées lors des élections européennes de 2014 et de l'élection présidentielle française de 2017 et nous déterminons les candidats les plus influents. Les résultats montrent que notre modèle est suffisamment flexible pour répondre aux besoins des spécialistes en sciences sociales et que l'utilisation de la théorie des fonctions de croyances est pertinente pour traiter des relations multiples. Nous évaluons également l'approche sur l'ensemble de données CLEF RepLab 2014 et montrons que notre approche conduit à des résultats significatifs. Nous proposons aussi deux extensions de TwitBelief traitant le contenu des tweets. La première est l'estimation de la polarisation de l'influence sur le réseau Twitter en utilisant l'analyse des sentiments avec l'algorithme des forêts d'arbres décisionnels. La deuxième extension est la catégorisation des styles de communication dans Twitter, il s'agit de déterminer si le style de communication des utilisateurs de Twitter est informatif, interactif ou équilibré. / Influence in complex networks and in particular Twitter has become recently a hot research topic. Detecting most influential users leads to reach a large-scale information diffusion area at low cost, something very useful in marketing or political campaigns. In this thesis, we propose a new approach that considers the several relations between users in order to assess influence in complex networks such as Twitter. We model Twitter as a multiplex heterogeneous network where users, tweets and objects are represented by nodes, and links model the different relations between them (e.g., retweets, mentions, and replies).The multiplex PageRank is applied to data from two datasets in the political field to rank candidates according to their influence. Even though the candidates' ranking reflects the reality, the multiplex PageRank scores are difficult to interpret because they are very close to each other.Thus, we want to go beyond a quantitative measure and we explore how relations between nodes in the network could reveal about the influence and propose TwitBelief, an approach to assess weighted influence of a certain node. This is based on the conjunctive combination rule from the belief functions theory that allow to combine different types of relations while expressing uncertainty about their importance weights. We experiment TwitBelief on a large amount of data gathered from Twitter during the European Elections 2014 and the French 2017 elections and deduce top influential candidates. The results show that our model is flexible enough to consider multiple interactions combination according to social scientists needs or requirements and that the numerical results of the belief theory are accurate. We also evaluate the approach over the CLEF RepLab 2014 data set and show that our approach leads to quite interesting results. We also propose two extensions of TwitBelief in order to consider the tweets content. The first is the estimation of polarized influence in Twitter network. In this extension, sentiment analysis of the tweets with the algorithm of forest decision trees allows to determine the influence polarity. The second extension is the categorization of communication styles in Twitter, it determines whether the communication style of Twitter users is informative, interactive or balanced.
3

Une nouvelle approche topologique pour la recommandation de tags dans les folksonomies / New approach to tag recommendation by level

Hmimida, Manel 03 March 2015 (has links)
Nous nous intéressons dans cette thèse à la problématique de recommandation de tags dans les systèmes de partage et de classification sociale des ressources, dits folksonomies. Les utilisateurs annotent les ressources à partager par des tags librement choisis. Or, la liberté de choix de tags les rends ambigus. Nous proposons une nouvelle approche topologique nommé TLTR (Two Level Tag Recommendation)pour la recommandation de tags. TLTR est basée sur une approche originale de compression des graphes. Le graphe d'une folksonomie est compressé en appliquant une méthode de clustering sur chacune des trois composantes d'une folksonomie, à savoir: l'ensemble des utilisateurs, des ressources et des tags. Nous proposons également une méthode de clustering topologique basée sur une approche centrée graine pour la détection des communautés dans les graphes multiplexes. Une approche topologique classique, en occurrence la méthode Folkrank, est appliquée sur le graphe réduit afin de sélectionner les clusters de tags les plus appropriés. Ces clusters sont ensuite utilisés pour construire un autre graphe contextuel extrait du graphe original représentant la folksonomie. La méthode Folkrank est à nouveau appliquée afin de calculer la liste de tags à recommander. Des expérimentations sur des grandes folksonomies, notamment, des jeux de données extraits du système de partage des références bibliographiques Bibsonomy montrent la pertinence de notre approche. / We focus in this thesis on the problem of tag recommendation in social sharing to classification systems called folksonomies. Users of a folksonomy annotate their resources with freely tags chosen. We propose here a new topological approach for tags recommendation called TLTR (Two Level Tag Recommendation). TLTR (Two Level Tag Recommendation) is based on an original approach of graph compression. The graph of a folksonomy is compressed by a clustering each of the three components, namely the set of users, resources and tags. A topological clustering method based on a seed-centered approach for community detection in multiplex graphs is proposed. A classical topological approach, namely Folkrank, is applied to the reduced graph to select the most appropriate clusters of tags. These clusters are then used to build another contextual graph extracted from the original graph representing the folksonomy. Folkrank method is applied again to compute the list of tags to recommend. Experiments on large folksonomy, including, data extracted from references system Bibsonomy show the relevance of our approach.
4

Prévision de liens dans des grands graphes de terrain (application aux réseaux bibliographiques) / Link Prediction in Large-scale Complex Networks (Application to bibliographical Networks)

Pujari, Manisha 04 March 2015 (has links)
Nous nous intéressons dans ce travail au problème de prévision de nouveaux liens dans des grands graphes de terrain. Nous explorons en particulier les approches topologiques dyadiques pour la prévision de liens. Différentes mesures de proximité topologique ont été étudiées dans la littérature pour prédire l’apparition de nouveaux liens. Des techniques d’apprentissage supervisé ont été aussi utilisées afin de combiner ces différentes mesures pour construire des modèles prédictifs. Le problème d’apprentissage supervisé est ici un problème difficile à cause notamment du fort déséquilibre de classes. Dans cette thèse, nous explorons différentes approches alternatives pour améliorer les performances des approches dyadiques pour la prévision de liens. Nous proposons d’abord, une approche originale de combinaison des prévisions fondée sur des techniques d’agrégation supervisée de listes triées (ou agrégation de préférences). Nous explorons aussi différentes approches pour améliorer les performances des approches supervisées pour la prévision de liens. Une première approche consiste à étendre l’ensemble des attributs décrivant un exemple (paires de noeuds) par des attributs calculés dans un réseau multiplexe qui englobe le réseau cible. Un deuxième axe consiste à évaluer l’apport destechniques de détection de communautés pour l’échantillonnage des exemples. Des expérimentations menées sur des réseaux réels extraits de la base bibliographique DBLP montrent l’intérêt des approaches proposées. / In this work, we are interested to tackle the problem of link prediction in complex networks. In particular, we explore topological dyadic approaches for link prediction. Different topological proximity measures have been studied in the scientific literature for finding the probability of appearance of new links in a complex network. Supervided learning methods have also been used to combine the predictions made or information provided by different topological measures. The create predictive models using various topological measures. The problem of supervised learning for link prediction is a difficult problem especially due to the presence of heavy class imbalance. In this thesis, we search different alternative approaches to improve the performance of different dyadic approaches for link prediction. We propose here, a new approach of link prediction based on supervised rank agregation that uses concepts from computational social choice theory. Our approach is founded on supervised techniques of aggregating sorted lists (or preference aggregation). We also explore different ways of improving supervised link prediction approaches. One approach is to extend the set of attributes describing an example (pair of nodes) by attributes calculated in a multiplex network that includes the target network. Multiplex networks have a layered structure, each layer having different kinds of links between same sets of nodes. The second way is to use community information for sampling of examples to deal with the problem of classe imabalance. Experiments conducted on real networks extracted from well known DBLP bibliographic database.

Page generated in 0.0335 seconds