• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Détection et localisation de cibles derrière un mur avec un système radar ULB

Zhao, Xiaowei 16 November 2012 (has links) (PDF)
Le cadre de cette thèse est centré sur l'étude d'un radar ultra large bande (ULB) en mode impulsionnel, pour la " vision " à travers les murs (VAM), qui présente de nombreuses applications tant dans le domaine militaire (lors des assauts, des prises d'otages, ...) que dans le secteur de la sécurité civile (recherche de personnes dans des décombres, dans un incendie, ...). Pour ces utilisations, l'image réelle de la scène observée n'est pas nécessaire, seules certaines informations pertinentes suffisent : nombre de personnes, position, vitesse de déplacement, etc. C'est dans ce contexte que nous avons développé un dispositif expérimental de détection et des techniques de localisation de cibles derrière un mur. Le radar développé est constitué d'un émetteur impulsionnel couvrant la gamme de fréquence de 3 GHz à 6 GHz, et de trois récepteurs indépendants, associés à des algorithmes de localisation et de reconstruction d'image.Le premier algorithme repose sur une technique de trilatération. Une fois, le modèle théorique présenté, plusieurs méthodes de résolution sont étudiées pour l'estimation de la mesure de la distance de propagation du signal. La méthode de Brent-Dekker a été retenue pour sa rapidité de convergence et son faible nombre d'itérations. Bien que cette technique soit précise, elle ne permet pas d'obtenir une image de la scène, mais juste de localiser les cibles, sans apporter des informations sur ses dimensions. C'est pourquoi une seconde approche, basée sur une " formation de faisceau ", a été étudiée, afin d'obtenir une représentation 2D de la scène. Nous avons choisi de développer une méthode de rétroprojection non cohérente, technique la plus simple qui ne nécessite pas de contrainte forte sur la phase du signal ni sur le positionnement des antennes. Différentes variantes de rétroprojection ont été proposées : la rétroprojection avec cross corrélation, la rétroprojection cross corrélation améliorée et la rétroprojection bicross corrélée. Ces trois méthodes reposent sur une fusion d'informations capturées par l'antenne réceptrice avec celles obtenues sur des antennes dites de référence. Cette fusion a permis d'améliorer progressivement le rendu des images.Pour conclure ses travaux, une perspective est ébauchée afin de minimiser le taux de fausse détection, elle s'appuie sur la collaboration de la technique de trilatération avec la technique de rétroprojection bicross corrélée. Cette collaboration permet de mettre en correspondance les détections estimées par la technique de trilatération et celles utilisant la rétroprojection bicross corrélée. Les cibles non appariées sont alors supprimées selon des critères spécifiques à chacune des deux approches.
2

Détection et localisation de cibles derrière un mur avec un système radar ULB / Through the wall targets detection and localization with a UWB radar system

Zhao, Xiaowei 16 November 2012 (has links)
Le cadre de cette thèse est centré sur l'étude d'un radar ultra large bande (ULB) en mode impulsionnel, pour la « vision » à travers les murs (VAM), qui présente de nombreuses applications tant dans le domaine militaire (lors des assauts, des prises d’otages, …) que dans le secteur de la sécurité civile (recherche de personnes dans des décombres, dans un incendie, ...). Pour ces utilisations, l’image réelle de la scène observée n’est pas nécessaire, seules certaines informations pertinentes suffisent : nombre de personnes, position, vitesse de déplacement, etc. C'est dans ce contexte que nous avons développé un dispositif expérimental de détection et des techniques de localisation de cibles derrière un mur. Le radar développé est constitué d’un émetteur impulsionnel couvrant la gamme de fréquence de 3 GHz à 6 GHz, et de trois récepteurs indépendants, associés à des algorithmes de localisation et de reconstruction d'image.Le premier algorithme repose sur une technique de trilatération. Une fois, le modèle théorique présenté, plusieurs méthodes de résolution sont étudiées pour l'estimation de la mesure de la distance de propagation du signal. La méthode de Brent-Dekker a été retenue pour sa rapidité de convergence et son faible nombre d’itérations. Bien que cette technique soit précise, elle ne permet pas d’obtenir une image de la scène, mais juste de localiser les cibles, sans apporter des informations sur ses dimensions. C’est pourquoi une seconde approche, basée sur une « formation de faisceau », a été étudiée, afin d'obtenir une représentation 2D de la scène. Nous avons choisi de développer une méthode de rétroprojection non cohérente, technique la plus simple qui ne nécessite pas de contrainte forte sur la phase du signal ni sur le positionnement des antennes. Différentes variantes de rétroprojection ont été proposées : la rétroprojection avec cross corrélation, la rétroprojection cross corrélation améliorée et la rétroprojection bicross corrélée. Ces trois méthodes reposent sur une fusion d'informations capturées par l'antenne réceptrice avec celles obtenues sur des antennes dites de référence. Cette fusion a permis d'améliorer progressivement le rendu des images.Pour conclure ses travaux, une perspective est ébauchée afin de minimiser le taux de fausse détection, elle s'appuie sur la collaboration de la technique de trilatération avec la technique de rétroprojection bicross corrélée. Cette collaboration permet de mettre en correspondance les détections estimées par la technique de trilatération et celles utilisant la rétroprojection bicross corrélée. Les cibles non appariées sont alors supprimées selon des critères spécifiques à chacune des deux approches. / The content of this thesis is focused on the study of an UWB pulse radar for through the wall vision which has many applications in the military domain (assaults, hostage rescue,…) and in the civil security domain (people search in the rubble, in a fire).For these uses, the real observed scene image is not necessary, only some relevant information is enough: number of persons, position, velocity of movement, etc. It’s in this context where we have developed an experimental detection device and some through the wall targets localization techniques. The developed radar consists of a pulse transmitter covering the frequency range from 3GHz to 6GHz, and three independent receivers, combined with some localization algorithms and image reconstruction.The first algorithm is based on a technique of trilateration. Once the theoretical model is presented, many resolutions methods are studied for estimation of the signal propagation distance measurement. The Brent-Dekker method has been chosen for its fast convergence and low number of iterations. Although the trilateration technique is accurate, it does not allow obtaining a scene image, but just locate the targets, without providing their dimensions. Therefore a second approach, based on a “beam forming”, has been studied, in order to obtain a 2D scene representation. We have chosen to develop a non-coherent backprojection method, it is the most simple technique which does not require a strong constraint on the signal phase nor on the antenna positions. Different backprojection methods have been proposed: the backprojection with cross correlation, the improved backprojection with cross correlation and bi-cross correlated backprojection. These three methods are based on a fusion of captured information by the receiving antennas and with the obtained information on the “referenced” antennas. This fusion allows improving the image quality progressively.To conclude this work, a perspective is initiated in order to minimize the false detection rate, it is based on the cooperation of the trilateration technique and bi-cross correlated backprojection. This cooperation allows matching the estimated detection by the trilateration technique and the bi-cross correlated backprojection technique. The mismatched targets are removed according to some specific criterias to each approach.
3

Adéquation Algorithme Architecture pour la reconstruction 3D en imagerie médicale TEP

Gac, Nicolas 17 July 2008 (has links) (PDF)
L'amélioration constante de la résolution dynamique et temporelle des scanners et des méthodes de reconstruction en imagerie médicale, s'accompagne d'un besoin croissant en puissance de calcul. Les accélérations logicielles, algorithmiques et matérielles sont ainsi appelées à réduire le fossé technologique existant entre les systèmes d'acquisition et ceux de reconstruction.<br />Dans ce contexte, une architecture matérielle de rétroprojection 3D en Tomographie à Emission de Positons (TEP) est proposée. Afin de lever le verrou technologique constitué par la forte latence des mémoires externes de type SDRAM, la meilleure Adéquation Algorithme Architecture a été recherchée. Cette architecture a été implémentée sur un SoPC (System on Programmable Chip) et ses performances comparées à celles d'un PC, d'un serveur de calcul et d'une carte graphique. Associée à un module matériel de projection 3D, cette architecture permet de définir une paire matérielle de projection/rétroprojection et de constituer ainsi un système de reconstruction complet.
4

Reconstruction de la dose absorbée in vivo en 3D pour les traitements RCMI et arcthérapie à l'aide des images EPID de transit / 3D in vivo absorbed dose reconstruction for IMRT and arc therapy treatments with epid transit images

Younan, Fouad 13 December 2018 (has links)
Cette thèse a été réalisée dans le cadre de la dosimétrie des faisceaux de haute énergie délivrés au patient pendant un traitement de radiothérapie externe. L'objectif de ce travail est de vérifier que la distribution de dose 3D absorbée dans le patient est conforme au calcul réalisé sur le système de planification de traitement (TPS) à partir de l'imageur portal (en anglais : Electronic Portal Imaging Device, EPID). L'acquisition est réalisée en mode continu avec le détecteur aS-1200 au silicium amorphe embarqué sur la machine TrueBeam STx (VARIAN Medical system, Palo Alto, USA). Les faisceaux ont une énergie de 10 MeV et un débit de 600 UM.min-1. La distance source-détecteur (DSD) est de 150 cm. Après correction des pixels défectueux, une étape d'étalonnage permet de convertir leur signal en dose absorbée dans l'eau via une fonction de réponse. Des kernels de correction sont également utilisés pour prendre en compte la différence de matériaux entre l'EPID et l'eau et pour corriger la pénombre sur les profils de dose. Un premier modèle de calcul a permis ensuite de rétroprojeter la dose portale en milieu homogène en prenant en compte plusieurs phénomènes : les photons diffusés provenant du fantôme et rajoutant un excès de signal sur les images, l'atténuation des faisceaux, la diffusion dans le fantôme, l'effet de build-up et l'effet de durcissement du faisceau avec la profondeur. La dose reconstruite est comparée à celle calculée par le TPS avec une analyse gamma globale (3% du maximum de dose et 3 mm de DTA). L'algorithme a été testé sur un fantôme cylindrique homogène et sur un fantôme de pelvis à partir de champs modulés en intensité (RCMI) et à partir de champs d'arcthérapie volumique modulés, VMAT selon l'acronyme anglais Volumetric Modulated Arc Therapy. Le modèle a ensuite été affiné pour prendre en compte les hétérogénéités traversées dans le milieu au moyen des distances équivalentes eau dans une nouvelle approche de dosimétrie plus connue sous le terme de " in aqua vivo " (1). Il a été testé sur un fantôme thorax et, in vivo sur 10 patients traités pour une tumeur de la prostate à partir de champs VMAT. Pour finir, le modèle in aqua a été testé sur le fantôme thorax avant et après y avoir appliqué certaines modifications afin d'évaluer la possibilité de détection de sources d'erreurs pouvant influencer la bonne délivrance de la dose au patient.[...] / This thesis aims at the dosimetry of high energy photon beams delivered to the patient during an external radiation therapy treatment. The objective of this work is to use EPID the Electronic Portal Imaging Device (EPID) in order to verify that the 3D absorbed dose distribution in the patient is consistent with the calculation performed on the Treatment Planning System (TPS). The acquisition is carried out in continuous mode with the aS-1200 amorphous silicon detector embedded on the TrueBeam STx machine (VARIAN Medical system, Palo Alto, USA) for 10MV photons with a 600 UM.min-1 dose rate. The source-detector distance (SDD) is 150 cm. After correction of the defective pixels, a calibration step is performed to convert the signal into an absorbed dose in water via a response function. Correction kernels are also used to take into account the difference in materials between EPID and water and to correct penumbra. A first model of backprojection was performed to reconstruct the absorbed dose distribution in a homogeneous medium by taking into account several phenomena: the scattered photons coming from the phantom to the EPID, the attenuation of the beams, the diffusion into the phantom, the build-up, and the effect of beam hardening with depth. The reconstructed dose is compared to the one calculated by the TPS with global gamma analysis (3% as the maximum dose difference criteria and 3mm as the distance to agreement criteria). The algorithm was tested on a homogeneous cylindrical phantom and a pelvis phantom for Intensity-Modulated Radiation Therapy (IMRT) and (Volumetric Arc Therapy (VMAT) technics. The model was then refined to take into account the heterogeneities in the medium by using radiological distances in a new dosimetrical approach better known as "in aqua vivo" (1). It has been tested on a thorax phantom and, in vivo on 10 patients treated for a prostate tumor from VMAT fields. Finally, the in aqua model was tested on the thorax phantom before and after making some modifications to evaluate the possibility of detecting errors that could affect the correct delivery of the dose to the patient. [...]
5

Proton computed tomography / Tomographie proton informatisée

Quiñones, Catherine Thérèse 28 September 2016 (has links)
L'utilisation de protons dans le traitement du cancer est largement reconnue grâce au parcours fini des protons dans la matière. Pour la planification du traitement par protons, l'incertitude dans la détermination de la longueur du parcours des protons provient principalement de l'inexactitude dans la conversion des unités Hounsfield (obtenues à partir de tomographie rayons X) en pouvoir d'arrêt des protons. La tomographie proton (pCT) est une solution attrayante car cette modalité reconstruit directement la carte du pouvoir d'arrêt relatif à l'eau (RSP) de l'objet. La technique pCT classique est basée sur la mesure de la perte d'énergie des protons pour reconstruire la carte du RSP de l'objet. En plus de la perte d'énergie, les protons subissent également des diffusions coulombiennes multiples et des interactions nucléaires qui pourraient révéler d'autres propriétés intéressantes des matériaux non visibles avec les cartes de RSP. Ce travail de thèse a consisté à étudier les interactions de protons au travers de simulations Monte Carlo par le logiciel GATE et d'utiliser ces informations pour reconstruire une carte de l'objet par rétroprojection filtrée le long des chemins les plus vraisemblables des protons. Mise à part la méthode pCT conventionnelle par perte d'énergie, deux modalités de pCT ont été étudiées et mises en œuvre. La première est la pCT par atténuation qui est réalisée en utilisant l'atténuation des protons pour reconstruire le coefficient d'atténuation linéique des interactions nucléaires de l'objet. La deuxième modalité pCT est appelée pCT par diffusion qui est effectuée en mesurant la variation angulaire due à la diffusion coulombienne pour reconstruire la carte de pouvoir de diffusion, liée à la longueur de radiation du matériau. L'exactitude, la précision et la résolution spatiale des images reconstruites à partir des deux modalités de pCT ont été évaluées qualitativement et quantitativement et comparées à la pCT conventionnelle par perte d'énergie. Alors que la pCT par perte d'énergie fournit déjà les informations nécessaires pour calculer la longueur du parcours des protons pour la planification du traitement, la pCT par atténuation et par diffusion donnent des informations complémentaires sur l'objet. D'une part, les images pCT par diffusion et par atténuation fournissent une information supplémentaire intrinsèque aux matériaux de l'objet. D'autre part, dans certains des cas étudiés, les images pCT par atténuation démontrent une meilleure résolution spatiale dont l'information fournie compléterait celle de la pCT par perte d'énergie. / The use of protons in cancer treatment has been widely recognized thanks to the precise stopping range of protons in matter. In proton therapy treatment planning, the uncertainty in determining the range mainly stems from the inaccuracy in the conversion of the Hounsfield units obtained from x-ray computed tomography to proton stopping power. Proton CT (pCT) has been an attractive solution as this modality directly reconstructs the relative stopping power (RSP) map of the object. The conventional pCT technique is based on measurements of the energy loss of protons to reconstruct the RSP map of the object. In addition to energy loss, protons also undergo multiple Coulomb scattering and nuclear interactions which could reveal other interesting properties of the materials not visible with the RSP maps. This PhD work is to investigate proton interactions through Monte Carlo simulations in GATE and to use this information to reconstruct a map of the object through filtered back-projection along the most likely proton paths. Aside from the conventional energy-loss pCT, two pCT modalities have been investigated and implemented. The first one is called attenuation pCT which is carried out by using the attenuation of protons to reconstruct the linear inelastic nuclear cross-section map of the object. The second pCT modality is called scattering pCT which is performed by utilizing proton scattering by measuring the angular variance to reconstruct the relative scattering power map which is related to the radiation length of the material. The accuracy, precision and spatial resolution of the images reconstructed from the two pCT modalities were evaluated qualitatively and quantitatively and compared with the conventional energy-loss pCT. While energy-loss pCT already provides the information needed to calculate the proton range for treatment planning, attenuation pCT and scattering pCT give complementary information about the object. For one, scattering pCT and attenuation pCT images provide an additional information intrinsic to the materials in the object. Another is that, in some studied cases, attenuation pCT images demonstrate a better spatial resolution and showed features that would supplement energy-loss pCT reconstructions.

Page generated in 0.0852 seconds