• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 14
  • Tagged with
  • 34
  • 34
  • 34
  • 32
  • 28
  • 24
  • 21
  • 20
  • 20
  • 15
  • 12
  • 11
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution des modèles de calcul pour le logiciel de planification de la dose en protonthérapie / Evolution of dose calculation models for protontherapy treatment planning

Vidal, Marie 07 October 2011 (has links)
Ce travail a été mené dans un contexte de collaboration étroite entre le Centre de Protonthérapie d’Orsay de l’Institut Curie (ICPO), Dosisoft et le laboratoire Creatis afin de mettre en place un nouveau modèle de calcul de dose pour la nouvelle salle de traitement de l’ICPO. Le projet de rénovation et d’agrandissement de ce dernier a permis l’installation d’un nouvel accélérateur ainsi que d’une nouvelle salle de traitement équipée d’un bras isocentrique de la société IBA, dans le but de diversifier les localisations des cancers traités à l’ICPO. Le premier objectif de cette thèse est de développer un ensemble de méthodologies et de nouveaux algorithmes liés au calcul de dose pour les adapter aux caractéristiques spécifiques des faisceaux délivrés par la nouvelle machine IBA, avec comme finalité de les inclure dans le logiciel Isogray de DOSIsoft. Dans un premier temps, la technique de la double diffusion est abordée en tenant compte des différences avec le système passif des lignes fixes de l’ICPO. Dans un deuxième temps, une modélisation est envisagée pour les modalités de faisceaux balayés. Le deuxième objectif est d’améliorer les modèles de calcul de dose Ray-Tracing et Pencil-Beam existants. En effet, le collimateur personnalisé du patient en fin de banc de mise en forme du faisceau pour les techniques de double diffusion et de balayage uniforme provoque une contamination de la dose délivrée au patient. Une méthodologie de réduction de cet effet a été mise en place pour le système passif de délivrance du faisceau, ainsi qu’un modèle analytique décrivant la fonction de contamination, dont les paramètres ont été validés grâce à des simulations Monte Carlo sur la plateforme GATE. Il est aussi possible d’appliquer ces méthodes aux systèmes actifs. / This work was achieved in collaboration between the Institut Curie Protontherapy Center of Orsay (ICPO), the DOSIsoft company and the CREATIS laboratory, in order to develop a new dose calculation model for the new ICPO treatment room. A new accelerator and gantry room from the IBA company were installed during the up-grade project of the protontherapy center, with the intention of enlarging the cancer localizations treated at ICPO. Developing a package of methods and new dose calculation algorithms to adapt them to the new specific characteristics of the delivered beams by the IBA system is the first goal of this PhD work. They all aim to be implemented in the DOSIsoft treatment planning software, Isogray. First, the double scattering technique is treated in taking into account major differences between the IBA system and the ICPO fixed beam lines passive system. Secondly, a model is explored for the scanned beams modality. The second objective of this work is improving the Ray-Tracing and Pencil-Beam dose calculation models already in use. For the double scattering and uniform scanning techniques, the patient personalized collimator at the end of the beam line causes indeed a patient dose distribution contamination. A reduction method of that phenomenon was set up for the passive beam system. An analytical model was developed which describes the contamination function with parameters validated through Monte-Carlo simulations on the GATE platform. It allows us to apply those methods to active scanned beams.
2

Optimisation du procédé de tomographie X appliqué à la détection des défauts dans les matériaux composites. / Optimization of the X-ray computed tomography applied to the detection of the defects in the composites materials.

Uhry, Cyril 19 September 2016 (has links)
Les matériaux composites à renfort carbone dans une matrice époxy présentent des propriétés remarquables au regard de leur poids. Cependant, ces matériaux peuvent présenter des défauts qui peuvent significativement altérer leurs propriétés. Il est donc nécessaire de disposer d'un moyen de contrôle non destructif performant, afin de vérifier la structure interne de ces matériaux. Dans ce document, la tomographie X est utilisée. La distinction des défauts dans ces matériaux est cependant compliquée à cause de la proximité chimique entre le carbone et la résine. Dans le but d'améliorer la détection de ces défauts, ce document propose l'étude des différents phénomènes physiques entrant en jeu lors du procédé de tomographie X dont l'étude des paramètres d'acquisition et les phénomènes physiques dégradant la qualité de l'image. Afin d'aider à la compréhension des différents phénomènes physiques, l'outil de la simulation est utilisé, celle-ci permettant d'étudier de manière indépendante tous ces phénomènes. Après avoir présenté dans la première section les matériaux composites et la tomographie X, la deuxième section décrit les caractéristiques du système d'acquisition tomographique utilisé. Ensuite, les caractéristiques de la simulation du système d'acquisition sont également présentées. La troisième section propose une étude des différents phénomènes physiques contribuant à l'image. En effet, la comparaison des résultats entre la simulation et l'expérimental a permis de mettre en évidence qu'un phénomène de rétrodiffusion se produit à l'intérieur du détecteur. Un protocole est présenté afin de le déterminer expérimentalement et de l'ajouter aux projections simulées. De plus, la simulation ne prenant pas en compte le bruit sur les projections, un protocole est présenté afin de le déterminer expérimentalement. La quatrième section présente l'étude de l'optimisation de la qualité de l'image par simulation. Le choix de la tension accélératrice est étudié, ainsi que l'influence du rayonnement diffusé objet. La cinquième section propose une validation expérimentale des résultats, notamment en appliquant la correction du rayonnement rétrodiffusé aux pièces composites d'intérêt. / The carbon-fiber-reinforced-polymer (CFRP) materials display excellent properties considering their weight. However, they also can display defects that can significantly decrease their properties. In order to verify the internal structure of the composite materials, non destructive control is required. In this document, the X-ray computed tomography is used. Nevertheless, the distinction of the defects is difficult because of the chemical proximity between the carbon and the resin. In order to improve the detection of the defects, this document proposes to study the different physical phenomena happening during the tomography process such as the study of the acquisition parameters and the phenomena that decrease the image quality. In order to help to understand the different phenomena, the simulation tool is used. It allows to study the different phenomena independently to the others. After the presentation of the composite materials and the x-ray computed tomography in the first part, the features of the used acquisition system are presented in the second part. The features of the simulation of the acquisition system are also presented. The third part propose a study of the different phenomena contributing to the image. The comparison of the results between the simulation and the experimental allows to highlight a backscattering phenomenon happening inside the detector. A protocol allowing to determine these phenomena experimentally and to add it on the computed projections is presented. Furthermore, the simulation does not take the noise on the projection into account. Another protocol is presented, allowing to determine it experimentally. The fourth part displays the study of the optimization of the image quality using the simulation. The choice of the accelerating voltage is studied as well as the influence of the object scatter radiation. The fifth part proposes an experimental validation of the results. Especially, a correction of the backscattering is presented and applied to the composites objects.
3

Détecteurs spectrométriques pour la mammographie et traitement associés / Signal processing methods for energy sensitive mammography exams

Pavia, Yoann 23 May 2017 (has links)
Nous avons étudié l’utilisation de détecteurs spectrométriques, qui émergent dans le domaine de l’imagerie médicale, pour leur application à la mammographie. Ces détecteurs permettent de discriminer l’énergie des photons reçus, ce qui apporte une information supplémentaire à l’imagerie d’atténuation traditionnelle. Ainsi, il est possible d’utiliser des techniques de décomposition en base de deux matériaux, notamment pour déterminer la densité glandulaire dans le sein, qui correspond au pourcentage de tissus glandulaires, et qui est un facteur de risque pour le développement d’un cancer, à partir d’une seule irradiation. Jusqu’alors, il était possible d’utiliser cette méthode à partir de deux expositions à deux énergies distinctes. Dans certains cas, une nouvelle tendance consiste à pratiquer des mammographies avec injection d’un produit de constratse iodé, mais cela nécessite également au moins deux irradiations. Nous avons donc proposé d’estimer la densité du sein et la concentration d’iode simultanément, à partir d’une seule irradiation, à une dose 0,93 mGy, en appliquant des méthodes de décomposition en base de trois matériaux. Premièrement, des méthodes polynomiales ont été adaptées pour être comptibles avec l’information spectrale provenant de 3 canaux d’énergies. Ensuite, nous avons montré qu’une deuxième approche, capable de prendre en compte une information spectrale plus fine, basée sur la maximisation de la vraisemblance entre un spectre mesuré et des spectres de références, était capable d’atteindre de meilleurs résultats. Enfin, nous avons développé une méthode capable de prendre en compte la compression du sein en mammographie pour améliorer les résultats obtenus par la méthode de maximum de vraisemblance. / Energy sensitive X-ray detectors are emerging in the field of medical imaging. We have investigated the use of this new type of X-ray detectos for their application to mammography exams. These detectors are able to discriminate the energy of received photons, which provides additional information to a standard mammography image only composed of the total attenuation signal. Thus, these detectors allow the use of basis material decomposition techniques, from a single x-ray exposure, and permit to determine the breast density, which corresponds to the percentage of glandular tissues in the breast. Breast density is known for being a risk factor for the development of breast cancers. Without energy sensitive X-ray detectors, this method requires two X-ray exposures at different energies. Contrast enhanced mammography is also developing but it requires the use an iodinated contrast media and at least two irradiations. Hence, we proposed to take benefit of energy-sensitive detectors to simultaneously estimate the breast density and the iodine concentration, using a single X-ray exposure at a mean glandular dose of 0.93 mGy. This approach is based on three basis material decomposition methods. First, different polynomial methods have been adapted to comply with spectral information from 3 energy channels. Then, we showed that a second approach, based on the maximisation of the likelihood between a measured spectrum and reference spectra, was able take into consideration finer spectral information and achieved better results. Finally, we have developed a method that can take into consideration the thickness of the compressed breast during a mammography exam to improve the results obtained by the maximum likelihood method.
4

Analyse de la microstructure 3D du tissu cardiaque humain à l’aide de la micro-tomographie à rayons X par contraste de phase / Analysis of the 3D microstructure of the human cardiac tissue using X-ray phase contrast micro-tomography

Mirea, Iulia 19 September 2017 (has links)
Les pathologies cardiovasculaires restent un des problèmes majeurs de santé publique qui justifie les recherches menées pour améliorer notre compréhension de la fonction cardiaque. Celles-ci nécessitent une bonne connaissance de la microarcInstitut de Technologie de Harbin - Chineecture myocardique afin de mieux comprendre les relations entre les fonctions mécanique, hémodynamique et les changements structuraux induits par les maladies cardiaques. Pour ce faire il est nécessaire d’accéder à une connaissance précise de l’arrangement spatial des composants du tissu. Cependant, notre compréhension de l’arcInstitut de Technologie de Harbin - Chineecture du coeur est limitée par le manque de description 3D de l’organisation des structures à l’échelle microscopique. Nous proposons d’explorer la structure 3D du tissu cardiaque en utilisant l’imagerie X synchrotron par contraste de phase disponible à l’ESRF. Pour la première fois, 9 échantillons de tissu de la paroi du ventricule gauche (VG) humain sont imagés à la résolution isotrope de 3,5 μm et analysés. Cette thèse est centrée sur la description 3D d’un des constituants principal du tissu: la matrice extracellulaire (MEC). La MEC inclue: l’endomysium qui entoure et sépare les myocytes et les capillaires de façon individuelle, le perimysium qui entoure et sépare des groupes de myocytes et l’épimysium qui enveloppe le muscle cardiaque dans son ensemble. Chaque échantillon reconstruit fait environ 30 Gb, ce qui représente une quantité importante de données à traiter et à visualiser. Pour ce faire, nous avons développé un algorithme automatique de traitement d’image pour binariser chaque échantillon et isoler la MEC. Ensuite, nous avons extrait des parametres statistiques relatifs à la microarcInstitut de Technologie de Harbin - Chineecture de l’ECM, principalement l’épaisseur des plans de clivage (PC) et les distances inter-PC. Les résultats montrent que l’arrangement local des PC diffère selon l’emplacement au sein du VG (postérieur, antérieur, septal) et de leur distance à l’apex (plus complexe). L’épaisseur des PC extraite de tous les échantillons va approximativement de 24 μm à 59 μm et la distance inter-PC de 70 μm à 280 μm avec une variation locale significative de la déviation standard. Ce sont de nouveaux marqueurs quantitatifs de la MEC du tissu cardiaque humain qui sont d’un intérêt majeur pour une meilleure compréhension de la fonction cardiaque. / Cardiovascular diseases remain one of the most serious health problems, motivating research to deepen our understanding of the myocardial function. To succeed, there is a need to get detailed information about the spatial arrangement of the cardiac tissue components. Currently, our understanding of the cardiac microarcInstitut de Technologie de Harbin - Chineecture is limited by the lack of 3D descriptions of the cardiac tissue at the microscopic scale. This thesis investigates the 3D cardiac tissue microstructure using X-Ray µ-CT phase contrast imaging available at the ESRF. For the first time, 9 human cardiac left ventricle (LV) wall samples are imaged at an isotropic resolution (3.5 µm) and analysed. We focus on the description of the cardiac extracellular matrix (CEM) that is one of the main components of the tissue. The CEM includes: the endomysium that surrounds and separates individual myocytes and capillaries, the perimysium that surrounds groups of myocytes and the epimysium that surrounds the entire heart muscle. Each reconstructed sample is about 30 Gb which represents a large amount of data to process and display. To succeed, we developed an automatic image processing algorithm to binarise each sample by selecting the CEM. We extract statistical features of the ECM, mainly the thickness of the cleavage planes (CP) and the inter-CP distances. The results show that the local 3D arrangement of the CP differs according to their location in the LV (posterior, anterior, septal) and their distance from the apex (more complex). The thickness of the CP extracted from all the samples roughly ranges from 24 µm to 59 µm and the inter-CP distances from 70 µm to 280 µm with significant local variations of the standard deviation. Those new quantitative markers of the ECM of the human cardiac are of main interest for a better understanding of the heart function.
5

Monte Carlo simulation of active scanning proton therapy system with Gate/Geant4 : Towards a better patient dose quality assurance / Simulation Monte Carlo d’un système de protonthérapie à balayage actif avec Gate/Geant4 : Vers une meilleure assurance qualité de la dose délivrée au patient

Grevillot, Loïc 14 October 2011 (has links)
L’hadronthérapie est une technique avancée de traitement du cancer par radiothérapie. Elle offre une ballistique d’irradiation bien supérieure à la radiothérapie conventionnelle, mais nécessite également un contrôle qualité plus poussé. Dans ce travail, nous avons implémenté de nouveaux outils dans la plateforme Monte Carlo GATE, afin de pouvoir recalculer des plans de traitements issus d’un Système de Plannification de Traitement (TPS). Tout d’abord, nous avons défini un environnement de simulation permettant de réaliser des calculs précis et éfficaces. Les simulations ont été validées avec des mesures et d’autres codes Monte Carlo, pour des profils de dose en profondeur et transverses. Un bon accord a été obtenu pour les profils de dose en profondeur, mais des écarts plus marqués ont été observés pour les profils transverses. Ensuite, une méthode de modélisation pour des systèmes de traitement à balayage actif de faisceau étroit (PBS) a été proposée. Elle a été appliquée à un système de protonthérapie IBA et validée par comparaison à des mesures pour des champs complexes. Une interface permettant de faire le lien entre GATE et des fichiers DICOM RT ION PLAN et DICOM RT DOSE a également été réalisée. Enfin, nous avons comparé des distributions de dose TPS et Monte Carlo en milieux homogènes et hétérogènes. Les modèles de faisceau implémentés dans ces deux outils dosimétriques ont montré un accord satisfaisant en milieu homogène, mais les limites du TPS ont été mises en évidence dans des milieux hétérogènes. Un plan de prostate composé de deux champs latéraux opposés a été simulé et comparé avec le TPS, démontrant les nouvelles capacités de la plateforme. Dans cette thèse de doctorat, nous avons montré que la plateforme Monte Carlo GATE est un bon candidat pour la simulation de plans de traitements PBS et peut permettre l’évaluation des algorithmes de calcul de dose implémentés dans les TPSs. Cette plateforme supporte également des applications d’imagerie, telles que l’imagerie PET ou gamma-prompt et ouvre la porte à des recherches multidisciplinaires innovantes. / Hadron Therapy is an advanced radiotherapy technique for cancer treatment. It offers a better irradiation ballistic than conventional techniques and therefore requires appropriate quality assurance procedures. In this work, we upgraded the GEANT4-based GATE Monte Carlo platform in order to recalculate the TPS dose distributions in view of further benchmarking. In a first step, we selected an appropriate simulation environment (physics models and parameters) in order to produce accurate and efficient simulations. GATE simulations were validated using measurements and other Monte Carlo codes for depth-dose and transverse profiles. While a good agreement was found for depth-dose profiles, larger discrepancies were pointed out for transverse profiles. In a second step, we developed a modeling method to simulate active scanning beam delivery systems, which does not require to simulate the components of the treatment nozzle. The method has been successfully applied to an IBA proton therapy system and validated against measurements for complex treatment plans. Interfaces have also been developed in order to link DICOM RT ION PLAN and DICOM RT DOSE with GATE. Finally, we compared in a third step the TPS and Monte Carlo dose distributions in homogeneous and heterogeneous configurations. The beam models of both dose engines were in satisfactory agreement, allowing further evaluation of clinical treatment plans. A two-field prostate plan has been evaluated, showing a satisfactory agreement between the TPS and Monte Carlo, and demonstrating the novel capabilities of the platform for the evaluation of the TPS. To summarize, we selected an appropriate simulation environment for proton therapy, proposed a modeling method for active scanning systems and presented a method to compare the TPS and Monte Carlo dose distributions. All tools developed in GATE were or will be publicly released. A detailed validation stage of the system including absolute dosimetry is still necessary, in order to quantitatively evaluate its accuracy in various homogeneous and heterogeneous configurations. In this thesis, we have demonstrated that the GATE Monte Carlo platform is a good candidate for the simulation of active scanning delivery systems, allowing further TPS benchmarking. Moreover, the GATE platform also handles imaging applications, such as PET or prompt-gamma imaging towards online treatment monitoring and paves the way of interdisciplinary research advances.
6

Incertitudes et mouvement dans le traitement des tumeurs pulmonaires : De la radiothérapie à l’hadronthérapie / Uncertainties and motion management in lung radiotherapy : From photons to ions

Bouilhol, Gauthier 26 November 2013 (has links)
Cette thèse porte sur la prise en compte des incertitudes et du mouvement dans le traitement des tumeurs pulmonaires en radiothérapie, que ce soit par photons, par protons ou par ions légers (hadronthérapie). L’accent est mis sur les méthodes de prise en compte du mouvement dites "passives". Ces méthodes, ne nécessitant pas d’asservissement respiratoire pour la délivrance de la dose, sont moins lourdes à mettre en place, et limitent l’introduction de nouvelles sources d’incertitudes. Des contributions cliniques et méthodologiques sont proposées. Tout d’abord, l’imagerie tomodensitométrique (TDM) pour la planification des traitements doit faire l’objet d’une attention particulière dans le cas de tumeurs soumises aux mouvements respiratoires. Nous avons évalué l’influence de la présence d’artéfacts de mouvements dans les images TDM sur la qualité de la planification. Nous avons également proposé des méthodologies et des recommandations pour l’optimisation des paramètres d’acquisition ainsi qu’un algorithme original de détection automatique des artéfacts dans les images TDM 4D. L’une des principales sources d’incertitudes lors de la planification de traitements en radiothérapie concerne la délinéation des volumes cibles. Nous avons évalué la variabilité inter-observateur de délinéation du volume cible macroscopique (GTV) et du volume cible interne (ITV) via une méthode originale permettant de l’intégrer dans le calcul des marges de sécurité. La réduction des incertitudes dues au mouvement respiratoire peut être réalisée en associant au système de contention une compression abdominale afin de limiter l’amplitude du mouvement respiratoire. Nous avons proposé une étude visant à évaluer l’impact de l’utilisation d’un tel système en fonction de la localisation dans le poumon. En radiothérapie par photons, une stratégie appelée mid-position consiste à irradier la tumeur dans sa position moyenne pondérée dans le temps et permet de réduire les marges par rapport à une stratégie ITV tout en conservant une couverture dosimétrique correcte. Une partie du travail de la thèse a consisté à participer à l’élaboration d’une étude clinique visant à comparer les deux stratégies, ITV et mid-position. Dans la plupart des cas, le mouvement respiratoire a une distribution de probabilité non-gaussienne et asymétrique, pouvant invalider la recette de calcul de marges de van Herk pour des mouvements tumoraux fortement asymétriques et de grande amplitude. Nous avons proposé un modèle numérique afin de prendre en compte cette asymétrie. Enfin, la prise en compte du mouvement respiratoire en hadronthérapie par des marges de sécurité doit faire l’objet de considérations spécifiques, en particulier en raison de la sensibilité du dépôt de dose aux variations de densité sur la trajectoire du faisceau. Dans une dernière partie, la définition des marges de sécurité pour prendre en compte le mouvement respiratoire de manière optimale est discutée. / This PhD thesis focuses on the uncertainties and motion management in lung radiation therapy and particle therapy. Passive motion management techniques are considered. They consist in delivering the dose without any respiratory beam monitoring which may be difficult to set up or may introduce additional uncertainties. Clinical and methodological contributions about different treatment steps are proposed. First of all, computed tomography (CT) images for treatment planning must be carefully acquired in the presence of respiration-induced tumor motion. We assessed the impact of motion artifacts on the quality of treatment planning. We also proposed methodologies and recommendations about the optimization of 4D-CT acquisition parameters and an original method for automated motion artifact detection in 4D-CT images. Target delineation introduces one of the main source of uncertainties during radiation therapy treatment planning. We quantified inter-observer variations in the delineation of the gross tumor volume (GTV) and the internal target volume (ITV) using an original method in order to incorporate them in margin calculation. Reduction of motion uncertainties can be achieved by combining an abdominal pressure device with the immobilization system to reduce the amplitude of respiratory motion. We proposed a study to evaluate the usefulness of such a device according to the tumor location within the lung. Delivering the dose to the ITV implies an important exposure of healthy tissues along the tumor trajectory. An alternative strategy consists in irradiating the tumor in its time-averaged mean position, the mid-position. Margins are reduced compared with an ITV-based strategy while maintaining a correct tumor coverage. One part of the work consisted in participating in the implementation of a clinical trial in photon radiation therapy to compare the two strategies, ITV and mid-position. In the margin recipe proposed by van Herk, a Gaussian distribution of all combined errors is assumed. In most cases, respiratory motion has an asymmetric non-Gaussian distribution and the assumption may not be valid for strongly asymmetric tumor motions with a large amplitude. We proposed a numerical population-based model to incorporate asymmetry and non-Gaussianity of respiratory motion in margin calculation. Finally, when taking respiratory motion into account in particle therapy with safety margins, one must consider various parameters, particularly the dose deposit sensitivity to density variations. The last part is dedicated to a discussion on the defining of safety margins in order to optimally take into account respiratory motion.
7

Imagerie par rayons X résolue en énergie : Méthodes de décomposition en base de matériaux adaptées à des détecteurs spectrométriques / Energy-resolved X-ray Imaging : Material decomposition methods adapted for spectrometric detectors

Potop, Alexandra-Iulia 02 October 2014 (has links)
Les systèmes d’imagerie par rayons X conventionnels utilisent des détecteurs à base de scintillateur en mode intégration d’énergie. La nouvelle génération de détecteurs à base de semi-conducteur CdTe/CdZnTe permet de compter le nombre de photons et de mesurer l’énergie avec laquelle les photons arrivent sur le détecteur. Le laboratoire LDET (CEA LETI) a développé des détecteurs spectrométriques pixellisés à base de CdTe pour l’imagerie par rayons X associés à un circuit de lecture rapide permettant de travailler à fort taux de comptage avec une bonne résolution en énergie. Ces travaux de thèse proposent d’apporter une contribution au traitement des données acquises sur ces détecteurs résolus en énergie pour la quantification des constituants des matériaux en radiographie et en tomographie. Le cadre médical applicatif choisi est l’ostéodensitométrie. Des simulations de radiographie, qui prennent en compte les imperfections du système de détection, comme le partage de charges et les empilements, ont été réalisées. Nous avons choisi d’étudier des méthodes de traitements des données spectrales basées sur la décomposition en base de matériaux. Cette technique de réduction des données consiste à modéliser le coefficient d’atténuation linéique d’un matériau par une combinaison linéaire des fonctions d’atténuation de deux matériaux de base. Deux approches, utilisant toutes les deux un apprentissage par calibrage, ont été adaptées pour notre application. La première est une adaptation de l’approche polynômiale standard, appliquée pour deux et trois canaux d’énergie. Un processus d’optimisation des seuils des canaux a été réalisé afin de trouver la configuration optimale des bandes d’énergie. Une étude sur le nombre de canaux a permis d’évaluer les limites de la formulation polynômiale. Pour aller plus loin dans l’exploitation du potentiel des nouveaux détecteurs, une approche statistique développée dans notre laboratoire a été adaptée pour la décomposition en base de matériaux. Elle peut se généraliser à un grand nombre de canaux (100 par exemple). Une comparaison des deux approches a été réalisée selon des critères de performance comme le bruit et la précision sur l’estimation des longueurs des matériaux traversés. La validation des deux approches étudiées sur des données expérimentales acquises en radiographie, dans notre laboratoire, avec des détecteurs spectrométriques, a montré une bonne quantification des constituants des matériaux, en accord avec les résultats obtenus en simulation. / Scintillator based integrating detectors are used in conventional X-ray imaging systems. The new generation of energy-resolved semiconductor radiation detectors, based on CdTe/CdZnTe, allows counting the number of photons incident on the detector and measure their energy. The LDET laboratory developed pixelated spectrometric detectors for X-ray imaging, associated with a fast readout circuit, which allows working with high fluxes and while maintaining a good energy resolution. With this thesis, we bring our contribution to data processing acquired in radiographic and tomographic modes for material components quantification. Osteodensitometry was chosen as a medical application. Radiographic data was acquired by simulation with a detector which presents imperfections as charge sharing and pile-up. The methods chosen for data processing are based on a material decomposition approach. Basis material decomposition models the linear attenuation coefficient of a material as a linear combination of the attenuations of two basis materials based on the energy related information acquired in each energy bin. Two approaches based on a calibration step were adapted for our application. The first is the polynomial approach used for standard dual energy acquisitions, which was applied for two and three energies acquired with the energy-resolved detector. We searched the optimal configuration of bins. We evaluated the limits of the polynomial approach with a study on the number of channels. To go further and take benefit of the elevated number of bins acquired with the detectors developed in our laboratory, a statistical approach implemented in our laboratory was adapted for the material decomposition method for quantifying mineral content in bone. The two approaches were compared using figures of merit as bias and noise over the lengths of the materials traversed by X-rays. An experimental radiographic validation of the two approaches was done in our laboratory with a spectrometric detector. Results in material quantification reflect an agreement with the simulations.
8

Computed radiography system modeling, simulation and optimization / Modélisation, simulation et optimization d'une chaîne d'imagerie de radiographie numérique avec écrans photo-stimulables

Yao, Min 12 December 2014 (has links)
Depuis plus d’un siècle, la radiographie sur film est utilisée pour le contrôle non destructif (CND) de pièces industrielles. Avec l’introduction de méthodes numériques dans le domaine médical, la communauté du CND industriel a commencé à considérer également les techniques numériques alternatives au film. La radiographie numérique (en anglais Computed radiography -CR) utilisant les écrans photostimulables (en anglais imaging plate -IP) est une voie intéressante à la fois du point de vue coût et facilité d’implémentation. Le détecteur (IP) utilisé se rapproche du film car il est flexible et réutilisable. L’exposition de l’IP aux rayons X génère une image latente qui est ensuite lue et numérisée grâce à un système de balayage optique par laser. A basse énergie, les performances du système CR sont bonnes ce qui explique son utilisation importante dans le domaine médical. A haute énergie par contre, les performances du système CR se dégradent à la fois à cause de la mauvaise absorption de l’IP mais également de la présence de rayonnement diffusé par la pièce qui, étant d’énergie plus faible, est préférentiellement absorbée par l’IP. Les normes internationales préconisent l’utilisation d’écrans métalliques pour améliorer la réponse des systèmes CR à haute énergie. Néanmoins, la nature et l’épaisseur de ces écrans n’est pas clairement définie et la gamme des configurations possibles est large. La simulation est un outil utile pour prévoir les performances d’une expérience et déterminer les meilleures conditions opératoires. Les méthodes Monte Carlo sont communément admises comme étant les plus précises pour simuler les phénomènes de transport de rayonnement, et ainsi comprendre les phénomènes physiques en jeu. Cependant, le caractère probabiliste de ces méthodes implique des temps de calcul importants, voire prohibitifs pour des géométries complexes. Les méthodes déterministes au contraire, peuvent prendre en compte des géométries complexes avec des temps de calcul raisonnables, mais l’estimation du rayonnement diffusé est plus difficile. Dans ce travail de thèse, nous avons tout d’abord mené une étude de simulation Monte Carlo afin de comprendre le fonctionnement des IP avec écrans métalliques à haute énergie pour le contrôle de pièces de forte épaisseur. Nous avons notamment suivi le trajet des photons X mais également des électrons. Quelques comparaisons expérimentales ont pu être menées à l’ESRF (European Synchrotron Radiation Facility). Puis nous avons proposé une approche de simulation hybride, qui combine l'utilisation de codes déterministe et Monte Carlo pour simuler l'imagerie d'objets de forme complexe. Cette approche prend en compte la dégradation introduite par la diffusion des rayons X et la fluorescence dans l'IP ainsi que la diffusion des photons optiques dans l'IP. Les résultats de différentes configurations de simulation ont été comparés. / For over a century, film-based radiography has been used as a nondestructive testing technique for industrial inspections. With the advent of digital techniques in the medical domain, the NDT community is also considering alternative digital techniques. Computed Radiography (CR) is a cost-efficient and easy-to-implement replacement technique because it uses equipment very similar to film radiography. This technology uses flexible and reusable imaging plates (IP) as a detector to generate a latent image during x-ray exposure. With an optical scanning system, the latent image can be readout and digitized resulting in a direct digital image. CR is widely used in the medical field since it provides good performance at low energies. For industrial inspection, CR application is limited by its poor response to high energy radiation and the presence of scattering phenomena. To completely replace film radiography by such a system, its performance still needs to be improved by either finding more appropriate IPs or by optimizing operating conditions. Guidelines have been addressed in international standards to ensure a good image quality supplied by CR system, where metallic screens are recommended for the case of using high energy sources. However, the type and thickness of such a screen are not clearly defined and a large panel of possible configurations does exist. Simulation is a very useful tool to predict experimental outcomes and determine the optimal operating conditions. The Monte Carlo (MC) methods are widely accepted as the most accurate method to simulate radiation transport problems. It can give insight about physical phenomena, but due to its random nature, a large amount of computational time is required, especially for simulations involving complex geometries. Deterministic methods, on the other hand, can handle easily complex geometry, and are quite efficient. However, the estimation of scattering effects is more difficult with deterministic methods. In this thesis work, we have started with a Monte Carlo simulation study in order to investigate the physical phenomena involved in IP and in metallic screens at high energies. In particular we have studied separately the behavior of X-ray photons and electrons. Some experimental comparisons have been carried out at the European Synchrotron Radiation Facility. Then, we have proposed a hybrid simulation approach, combining the use of deterministic and Monte Carlo code, for simulating the imaging of complex shapes objects. This approach takes into account degradation introduced by X-ray scattering and fluorescence inside IP, as well as optical photons scattering during readout process. Different simulation configurations have been compared.
9

X-ray computed tomography reconstruction on non-standard trajectories for robotized inspection / Reconstruction 3D en tomographie X sur trajectoires non-standards

Banjak, Hussein 10 November 2016 (has links)
La tomographie par rayons X ou CT pour "Computed Tomography" est un outil puissant pour caractériser et localiser les défauts internes et pour vérifier la conformité géométrique d’un objet. Contrairement au cas des applications médicales, l’objet inspecté en Contrôle Non Destructif (CND) peut être très grand et composé de matériaux de haute atténuation, auquel cas l’utilisation d’une trajectoire circulaire pour l’inspection est impossible à cause de contraintes dans l’espace. Pour cette raison, l’utilisation de bras robotisés est l’une des nouvelles tendances reconnues dans la CT, car elle autorise plus de flexibilité dans la trajectoire d’acquisition et permet donc la reconstruction 3D de régions difficilement accessibles dont la reconstruction ne pourrait pas être assurée par des systèmes de tomographie industriels classiques. Une cellule de tomographie X robotisée a été installée au CEA. La plateforme se compose de deux bras robotiques pour positionner et déplacer la source et le détecteur en vis-à-vis. Parmi les nouveaux défis posés par la tomographie robotisée, nous nous concentrons ici plus particulièrement sur la limitation de l’ouverture angulaire imposée par la configuration en raison des contraintes importantes sur le mouvement mécanique de la plateforme. Le deuxième défi majeur est la troncation des projections qui se produit lorsque l’objet est trop grand par rapport au détecteur. L’objectif principal de ce travail consiste à adapter et à optimiser des méthodes de reconstruction CT pour des trajectoires non standard. Nous étudions à la fois des algorithmes de reconstruction analytiques et itératifs. Avant d’effectuer des inspections robotiques réelles, nous comptons sur des simulations numériques pour évaluer les performances des algorithmes de reconstruction sur des configurations d’acquisition de données. Pour ce faire, nous utilisons CIVA, qui est un outil de simulation pour le CND développé au CEA et qui est capable de simuler des données de projections réalistes correspondant à des configurations d’acquisition définies par l’utilisateur. / X-ray computed tomography (CT) is a powerful tool to characterize or localize inner flaws and to verify the geometric conformity of an object. In contrast to medical applications, the scanned object in non-destructive testing (NDT) might be very large and composed of high-attenuation materials and consequently the use of a standard circular trajectory for data acquisition would be impossible due to constraints in space. For this reason, the use of robotic arms is one of the acknowledged new trends in NDT since it allows more flexibility in acquisition trajectories and therefore could be used for 3D reconstruction of hardly accessible regions that might be a major limitation of classical CT systems. A robotic X-ray inspection platform has been installed at CEA LIST. The considered system integrates two robots that move the X-ray generator and detector. Among the new challenges brought by robotic CT, we focus in this thesis more particularly on the limited access viewpoint imposed by the setup where important constraints control the mechanical motion of the platform. The second major challenge is the truncation of projections that occur when only a field-of-view (FOV) of the object is viewed by the detector. Before performing real robotic inspections, we highly rely on CT simulations to evaluate the capability of the reconstruction algorithm corresponding to a defined scanning trajectory and data acquisition configuration. For this purpose, we use CIVA which is an advanced NDT simulation platform developed at CEA and that can provide a realistic model for radiographic acquisitions and is capable of simulating the projection data corresponding to a specific CT scene defined by the user. Thus, the main objective of this thesis is to develop analytical and iterative reconstruction algorithms adapted to nonstandard trajectories and to integrate these algorithms in CIVA software as plugins of reconstruction.
10

Quantitative material decomposition methods for X-ray spectral CT / Méthodes de décomposition quantitative des matériaux pour la tomographie spectrale aux rayons X

Su, Ting 28 June 2018 (has links)
La tomographie (CT) aux rayons X joue un rôle important dans l'imagerie non invasive depuis son introduction. Au cours des dernières années, de nombreuses avancées technologiques en tomographie par rayons X ont été observées, notamment la CT spectrale, qui utilise un détecteur à comptage de photons (PCD) pour discriminer les photons transmis correspondant à des bandes d'énergie sélectionnées afin d'obtenir une information spectrale. La CT spectrale permet de surmonter de nombreuses limitations des techniques précédentes et ouvre de nombreuses applications nouvelles, parmi lesquelles la décomposition quantitative des matériaux est le sujet le plus étudié. Un certain nombre de méthodes de décomposition des matériaux ont été rapportées et différents systèmes expérimentaux sont en cours de développement pour la CT spectrale. Selon le type de données sur lequel l'étape de décomposition fonctionne, nous avons les méthodes du domaine des projections (décomposition avant reconstruction) et les méthodes du domaine de l'image reconstruite (décomposition après reconstruction). La décomposition couramment utilisée est basée sur le critère des moindres carrés, nommée proj-LS et méthode ima-LS. Cependant, le problème inverse de la décomposition du matériau est généralement mal posé et les mesures du CT spectral aux rayons X souffrent de bruits de comptage de photons de Poisson. Le critère des moindres carrés peut conduire à un surajustement des données de mesure bruitées. Dans le présent travail, nous avons proposé un critère de moindre log-carré pour la méthode du domaine de projection afin de minimiser les erreurs sur le coefficient d'atténuation linéaire: méthode proj-LLS. De plus, pour réduire l'effet du bruit et lisser les images, nous avons proposé d'ajouter un terme de régularisation par patch pour pénaliser la somme des variations au carré dans chaque zone pour les décompositions des deux domaines, nommées proj-PR-LLS et ima -PR-LS méthode. Les performances des différentes méthodes ont été évaluées par des études de simulation avec des fantômes spécifiques pour différentes applications: (1) Application médicale: identification de l'iode et du calcium. Les résultats de la décomposition des méthodes proposées montrent que le calcium et l'iode peuvent être bien séparés et quantifiés par rapport aux tissus mous. (2) Application industrielle: tri des plastiques avec ou sans retardateur de flamme. Les résultats montrent que 3 types de matériaux ABS avec différents retardateurs de flamme peuvent être séparés lorsque l'épaisseur de l'échantillon est favorable. Enfin, nous avons simulé l'imagerie par CT spectrale avec un fantôme de PMMA rempli de solutions de Fe, Ca et K. Différents paramètres d'acquisition, c'est-à-dire le facteur d'exposition et le nombre de bandes d'énergie, ont été simulés pour étudier leur influence sur la performance de décomposition pour la détermination du fer. / X-ray computed tomography (X-ray CT) plays an important part in non-invasive imaging since its introduction. During the past few years, numerous technological advances in X-ray CT have been observed, including spectral CT, which uses photon counting detectors (PCDs) to discriminate transmitted photons corresponding to selected energy bins in order to obtain spectral information with one single acquisition. Spectral CT enables us to overcome many limitations of the conventional CT techniques and opens up many new application possibilities, among which quantitative material decomposition is the hottest topic. A number of material decomposition methods have been reported and different experimental systems are under development for spectral CT. According to the type of data on which the decomposition step operates, we have projection domain method (decomposition before reconstruction) and image domain method (decomposition after reconstruction). The commonly used decomposition is based on least square criterion, named proj-LS and ima-LS method. However, the inverse problem of material decomposition is usually ill-posed and the X-ray spectral CT measurements suffer from Poisson photon counting noise. The standard LS criterion can lead to overfitting to the noisy measurement data. In the present work, we have proposed a least log-squares criterion for projection domain method to minimize the errors on linear attenuation coefficient: proj-LLS method. Furthermore, to reduce the effect of noise and enforce smoothness, we have proposed to add a patchwise regularization term to penalize the sum of the square variations within each patch for both projection domain and image domain decomposition, named proj-PR-LLS and ima-PR-LS method. The performances of the different methods were evaluated by spectral CT simulation studies with specific phantoms for different applications: (1) Medical application: iodine and calcium identification. The decomposition results of the proposed methods show that calcium and iodine can be well separated and quantified from soft tissues. (2) Industrial application: ABS-flame retardants (FR) plastic sorting. Results show that 3 kinds of ABS materials with different flame retardants can be separated when the sample thickness is favorable. Meanwhile, we simulated spectral CT imaging with a PMMA phantom filled with Fe, Ca and K solutions. Different acquisition parameters, i.e. exposure factor and number of energy bins were simulated to investigate their influence on the performance of the proposed methods for iron determination.

Page generated in 0.4142 seconds