• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 2
  • Tagged with
  • 21
  • 11
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'un télescope à protons de recul pour la spectrométrie neutron : applications à l'instrumentation de précision et à la protonthérapie / Conception of a recoil protons telescope for neutron spectrometry : application to precision measurement and protontherapy

Combe, Rodolphe 13 September 2018 (has links)
Les neutrons sont étudiés dans des domaines divers en tant, par exemple, que particules d’intérêt pour la physique fondamentale, outil pour la biologie ou l'analyse élémentaire, ou encore danger pour l'Homme en radioprotection. La mesure de l'énergie des neutrons est indispensable pour l'ensemble de ces domaines, mais les caractéristiques des spectromètres peuvent varier grandement d'une application à l'autre. Dans le cadre de cette thèse, nous avons développé un télescope à protons de recul doté de capteurs à pixels CMOS ultra-rapides. Ce détecteur compact permet une reconstruction en temps-réel du spectre neutron jusqu'à de très hauts flux. Les applications développées au cours de ce thèse sont la mesure de précision auprès de l'accélérateur AMANDE entre 4 et 20 MeV, dans le cadre d’une collaboration avec l’IRSN-Cadarache, et la caractérisation des neutrons secondaires produits en salle de traitement de protonthérapie. / Neutrons are studied in various domains as, for example, particles of interest in fundamental physics, tool in biology and elemental analysis, or danger for human in radioprotection. The measurement of the neutron energy is necessary in all these domains, but the characteristics of the spectrometers can vary greatly from an application to another. In the field of this thesis, we conceived a recoil proton telescope using ultra-fast CMOS pixels sensors. This compact detector allows a real-time reconstruction of the neutron spectrum up to very high flux. The applications developed during this thesis are precision measurement at the AMANDE accelerator between 4 and 20 MeV, as part of a collaboration with IRSN-Cadarache, and the characterization of secondary neutrons produced in protontherapy treatment rooms.
2

Evaluations des doses dues aux neutrons secondaires reçues par des patients de différents âges traités par protonthérapie pour des tumeurs intracrâniennes

Sayah, Rima 19 October 2012 (has links) (PDF)
La protonthérapie est une technique avancée de radiothérapie qui permet de délivrer une dose élevée à la tumeur, tout en épargnant au mieux les tissus sains environnants, grâce aux propriétés balistiques des protons. Cependant, des particules secondaires, principalement des neutrons, sont créées par les interactions nucléaires que les protons initient dans les composantes de la ligne et de la salle de traitement, ainsi que dans le patient. Ces neutrons secondaires conduisent à des doses indésirables déposées aux tissus sains situés à distance du volume cible, dont la conséquence pourrait être une augmentation du risque de développement de seconds cancers chez les patients traités et en particulier chez les enfants. Cette thèse a pour objectif d'évaluer par calcul les doses dues aux neutrons secondaires reçues par des patients de différents âges traités à l'Institut Curie- centre de protonthérapie d'Orsay (ICPO) par des faisceaux de protons de 178 MeV pour des tumeurs intracrâniennes. Les traitements sont réalisés dans la nouvelle salle de l'ICPO équipée d'un bras isocentrique IBA. Les composants de la ligne et de la salle de traitement ainsi que la source de protons ont été modélisés à l'aide du code de calcul Monte Carlo MCNPX. Le modèle obtenu a été validé par une série de comparaisons de calculs à des mesures expérimentales. Ces comparaisons ont concerné : a) les distributions de doses latérales et en profondeur du faisceau de protons primaire dans un fantôme d'eau, b) la spectrométrie des neutrons en une point de la salle, c) les équivalents de doses ambiants en différents points de la salle et d) les doses à distance du volume cible au sein d'un fantôme physique anthropomorhe. Des accords satisfaisants ont été obtenus entre les calculs et les mesures, permettant ainsi de considérer le modèle comme validé.Les fantômes hybrides-voxels de différents âges, développés par l'Université de Floride ont été ensuite introduits dans le modèle et des calculs de doses dues aux neutrons secondaires aux différents organes de ces fantômes ont été réalisés. Les doses diminuent lorsque la distance de l'organe au champ de traitement augmente et lorsque l'âge du patient augmente. Un patient de 1 an peut recevoir des doses deux fois plus élevées qu'un adulte. La dose maximale, égale à 16,5 mGy pour un traitement délivrant 54 Gy à la tumeur, est reçue, pour le fantôme de 1 an, par les glandes salivaires. Une incidence latérale (gauche ou droite) du faisceau de protons peut délivrer des doses deux fois plus élevées qu'une incidence supérieure (gauche ou droite), et quatre fois plus élevées qu'une incidence antéro-supérieure pour certains organes. Des doses équivalentes aux organes dues aux neutrons ont été aussi calculées. Les facteurs de pondération wR des neutrons varient entre 4 et 10, et les doses équivalentes atteignent au maximum 155 mSv au cours d'un traitement complet.
3

Evolution des modèles de calcul pour le logiciel de planification de la dose en protonthérapie

Vidal, Marie 07 October 2011 (has links) (PDF)
Ce travail a été mené dans un contexte de collaboration étroite entre le Centre de Protonthérapie d'Orsay de l'Institut Curie (ICPO), Dosisoft et le laboratoire Creatis afin de mettre en place un nouveau modèle de calcul de dose pour la nouvelle salle de traitement de l'ICPO. Le projet de rénovation et d'agrandissement de ce dernier a permis l'installation d'un nouvel accélérateur ainsi que d'une nouvelle salle de traitement équipée d'un bras isocentrique de la société IBA, dans le but de diversifier les localisations des cancers traités à l'ICPO. Le premier objectif de cette thèse est de développer un ensemble de méthodologies et de nouveaux algorithmes liés au calcul de dose pour les adapter aux caractéristiques spécifiques des faisceaux délivrés par la nouvelle machine IBA, avec comme finalité de les inclure dans le logiciel Isogray de DOSIsoft. Dans un premier temps, la technique de la double diffusion est abordée en tenant compte des différences avec le système passif des lignes fixes de l'ICPO. Dans un deuxième temps, une modélisation est envisagée pour les modalités de faisceaux balayés. Le deuxième objectif est d'améliorer les modèles de calcul de dose Ray-Tracing et Pencil-Beam existants. En effet, le collimateur personnalisé du patient en fin de banc de mise en forme du faisceau pour les techniques de double diffusion et de balayage uniforme provoque une contamination de la dose délivrée au patient. Une méthodologie de réduction de cet effet a été mise en place pour le système passif de délivrance du faisceau, ainsi qu'un modèle analytique décrivant la fonction de contamination, dont les paramètres ont été validés grâce à des simulations Monte Carlo sur la plateforme GATE. Il est aussi possible d'appliquer ces méthodes aux systèmes actifs.
4

Effets physiques et biologiques des faisceaux de protons balayés : mesures et modélisation pour des balayages séquentiels à haut débit / Bio-physical effects of scanned proton beams : measurements and models for discrete high dose rates scanning systems

De Marzi, Ludovic 09 November 2016 (has links)
L'objectif principal de cette thèse est de développer et optimiser les algorithmes caractérisant les propriétés physiques et biologiques des mini-faisceaux de protons pour la réalisation des traitements avec modulation d'intensité. Un modèle basé sur la superposition et décomposition des mini-faisceaux en faisceaux élémentaires a été utilisé. Un nouveau modèle de description des mini-faisceaux primaires a été développé à partir de la sommation de trois fonctions gaussiennes. Les algorithmes ont été intégrés dans un logiciel de planification de traitement, puis validés expérimentalement et par comparaison avec des simulations Monte Carlo. Des approximations ont été réalisées et validées afin de réduire les temps de calcul en vue d'une utilisation clinique. Dans un deuxième temps, un travail en collaboration avec les équipes de radiobiologie de l'institut Curie a été réalisé afin d'introduire des résultats radiobiologiques dans l'optimisation biologique des plans de traitement. En effet, les faisceaux balayés sont délivrés avec des débits de dose très élevés (de 10 à 100 Gy/s) et de façon discontinue, et l'efficacité biologique des protons est encore relativement méconnue vue la diversité d'utilisation de ces faisceaux : les différents modèles disponibles et notamment leur dépendance avec le transfert d'énergie linéique ont été étudiés. De bons accords (écarts inférieurs à 3 % et 2 mm) ont été obtenus entre calculs et mesures de dose. Un protocole d'expérimentation pour caractériser les effets des hauts débits pulsés a été mis en place et les premiers résultats obtenus sur une lignée cellulaire suggèrent des variations d'efficacité biologique inférieures à 10 %, avec toutefois de larges incertitudes. / The main objective of this thesis is to develop and optimize algorithms for intensity modulated proton therapy, taking into account the physical and biological pencil beam properties. A model based on the summation and fluence weighted division of the pencil beams has been used. A new parameterization of the lateral dose distribution has been developed using a combination of three Gaussian functions. The algorithms have been implemented into a treatment planning system, then experimentally validated and compared with Monte Carlo simulations. Some approximations have been made and validated in order to achieve reasonable calculation times for clinical purposes. In a second phase, a collaboration with Institut Curie radiobiological teams has been started in order to implement radiobiological parameters and results into the optimization loop of the treatment planning process. Indeed, scanned pencil beams are pulsed and delivered at high dose rates (from 10 to 100 Gy/s), and the relative biological efficiency of protons is still relatively unknown given the wide diversity of use of these beams: the different models available and their dependence with linear energy transfers have been studied. A good agreement between dose calculations and measurements (deviations lower than 3 % and 2 mm) has been obtained. An experimental protocol has been set in order to qualify pulsed high dose rate effects and preliminary results obtained on one cell line suggested variations of the biological efficiency up to 10 %, though with large uncertainties.
5

Evaluations des doses dues aux neutrons secondaires reçues par des patients de différents âges traités par protonthérapie pour des tumeurs intracrâniennes / Secondary neutron doses received by patients of different ages during intracranial proton therapy treatments

Sayah, Rima 19 October 2012 (has links)
La protonthérapie est une technique avancée de radiothérapie qui permet de délivrer une dose élevée à la tumeur, tout en épargnant au mieux les tissus sains environnants, grâce aux propriétés balistiques des protons. Cependant, des particules secondaires, principalement des neutrons, sont créées par les interactions nucléaires que les protons initient dans les composantes de la ligne et de la salle de traitement, ainsi que dans le patient. Ces neutrons secondaires conduisent à des doses indésirables déposées aux tissus sains situés à distance du volume cible, dont la conséquence pourrait être une augmentation du risque de développement de seconds cancers chez les patients traités et en particulier chez les enfants. Cette thèse a pour objectif d’évaluer par calcul les doses dues aux neutrons secondaires reçues par des patients de différents âges traités à l’Institut Curie- centre de protonthérapie d’Orsay (ICPO) par des faisceaux de protons de 178 MeV pour des tumeurs intracrâniennes. Les traitements sont réalisés dans la nouvelle salle de l’ICPO équipée d’un bras isocentrique IBA. Les composants de la ligne et de la salle de traitement ainsi que la source de protons ont été modélisés à l’aide du code de calcul Monte Carlo MCNPX. Le modèle obtenu a été validé par une série de comparaisons de calculs à des mesures expérimentales. Ces comparaisons ont concerné : a) les distributions de doses latérales et en profondeur du faisceau de protons primaire dans un fantôme d’eau, b) la spectrométrie des neutrons en une point de la salle, c) les équivalents de doses ambiants en différents points de la salle et d) les doses à distance du volume cible au sein d’un fantôme physique anthropomorhe. Des accords satisfaisants ont été obtenus entre les calculs et les mesures, permettant ainsi de considérer le modèle comme validé.Les fantômes hybrides-voxels de différents âges, développés par l’Université de Floride ont été ensuite introduits dans le modèle et des calculs de doses dues aux neutrons secondaires aux différents organes de ces fantômes ont été réalisés. Les doses diminuent lorsque la distance de l’organe au champ de traitement augmente et lorsque l’âge du patient augmente. Un patient de 1 an peut recevoir des doses deux fois plus élevées qu’un adulte. La dose maximale, égale à 16,5 mGy pour un traitement délivrant 54 Gy à la tumeur, est reçue, pour le fantôme de 1 an, par les glandes salivaires. Une incidence latérale (gauche ou droite) du faisceau de protons peut délivrer des doses deux fois plus élevées qu’une incidence supérieure (gauche ou droite), et quatre fois plus élevées qu’une incidence antéro-supérieure pour certains organes. Des doses équivalentes aux organes dues aux neutrons ont été aussi calculées. Les facteurs de pondération wR des neutrons varient entre 4 et 10, et les doses équivalentes atteignent au maximum 155 mSv au cours d’un traitement complet. / Proton therapy is an advanced radiation therapy technique that allows delivering high doses to the tumor while saving the healthy surrounding tissues due to the protons’ ballistic properties. However, secondary particles, especially neutrons, are created during protons’ nuclear reactions in the beam-line and the treatment room components, as well as inside the patient. Those secondary neutrons lead to unwanted dose deposition to the healthy tissues located at distance from the target, which may increase the secondary cancer risks to the patients, especially the pediatric ones. The aim of this work was to calculate the neutron secondary doses received by patients of different ages treated at the Institut Curie-centre de Protonthérapie d’Orsay (ICPO) for intracranial tumors, using a 178 MeV proton beam. The treatments are undertaken at the new ICPO room equipped with an IBA gantry. The treatment room and the beam-line components, as well as the proton source were modeled using the Monte Carlo code MCNPX. The obtained model was then validated by a series of comparisons between model calculations and experimental measurements. The comparisons concerned: a) depth and lateral proton dose distributions in a water phantom, b) neutron spectrometry at one position in the treatment room, c) ambient dose equivalents at different positions in the treatment room and d) secondary absorbed doses inside a physical anthropomorphic phantom. A general good agreement was found between calculations and measurements, thus our model was considered as validated. The University of Florida hybrid voxelized phantoms of different ages were introduced into the MCNPX validated model, and secondary neutron doses were calculated to many of these phantoms’ organs. The calculated doses were found to decrease as the organ’s distance to the treatment field increases and as the patient’s age increases. The secondary doses received by a one year-old patient may be two times higher than the doses received by an adult. A maximum dose of 16.5 mGy for a whole treatment delivering 54 Gy to the tumor was calculated to the salivary glands of a one year-old phantom. The calculated doses for a lateral proton beam incidence (left or right) may be, for some organs, two times higher than doses for an upper incidence (left or right) and four times higher than doses for an antero-superior incidence. Neutron equivalent doses were also calculated for some organs. The neutron weighting factors wR were found to vary between 4 and 10 and the equivalent doses for the considered organs reached at maximum 155 mSv during a whole treatment.
6

Co-manipulation sûre d’un robot de protonthérapie / Safe physical human-robot interaction for a protontherapy robotic system

Baumeyer, Julien 28 June 2017 (has links)
Cette thèse se place dans un contexte médical de traitements oncologiques, plus particulièrement en protonthérapie robotisée. L’objectif de cette thèse, réalisée sous contrat Cifre avec la société LEONI CIA Cable Systems, est le développement d’une commande en co-manipulation sûre dédiée à un robot médical sériel. Cette commande doit permettre à un opérateur de manipuler intuitivement et précisément un robot de grande inertie positionneur de patients. Les contributions portent sur deux axes, d’une part le développement et l’implémentation sur le robot Orion de l’entreprise LEONI CIA Cable Systems d’une commande en admittance ainsi que la comparaison de trois dispositifs haptiques, et d’autre part le développement d’un mécanisme de détection de collisions proprioceptif permettant l’amélioration de la sécurité de fonctionnement. À partir d’une revue de la littérature concernant les commandes compliantes, nous avons développé et implémenté une commande en admittance dédiée au robot Orion en tenant compte de la discrétisation de la commande par le contrôleur spécifique de ce robot. Une expérience de comparaison sur le robot nous a permis d’identifier le dispositif haptique le mieux adapté au cas clinique considéré. Après une étude de l’état de l’art des mécanismes de détection de collisions, une approche fréquentielle de la modélisation du couple axial prenant en compte les rapports de réduction élevés et de technologie différente du robot a été proposée. Elle permet de modéliser finement le couple théoriquement fourni par les moteurs ; celui-ci est ensuite comparé avec la mesure du couple réellement produit afin de détecter une éventuelle collision. / This PhD thesis takes place in a medical context of oncological treatments, more particularly in robotised protontherapy. The objective of this thesis, carried out under a CIFRE contract with LEONI CIA Cable Systems, is the development of a safe comanipulation control dedicated to a serial medical robot. This control law should allow an operator to intuitively and precisely manipulate a robot of high inertia for accurate patients positioning. The contributions of this thesis focus on the development and implementation of an admittance-controlled Orion robot from LEONI CIA Cable Systems and the comparison of three haptic devices, and on the other hand, on the development of a proprioceptive collision detection mechanism allowing the improvement of operational safety. Based on a review of the literature on compliant controls, we have developed and implemented an admittance control approach dedicated to the Orion robot, taking into account the discretization of the control by the controller specific to this robot. A comparison experiment on the robot allowed us to identify the haptic device best suited to the clinical case considered. Based on a state of the art of collision detection mechanisms analysis, a frequency approach of the modeling of the axial torque taking into account the high reduction ratios and different robot technology has been proposed. It allows us to finely model the torque theoretically provided by the motors ; The latter is then compared with the measurement of the torque actually produced in order to detect a possible collision.
7

Recalage et planification du traitement en radiothérapie et protonthérapie

Baussé, Jérôme 07 October 2010 (has links) (PDF)
Dans le cadre d'un important et ambitieux projet de renouvellement de son centre, l'ICPO (Institut Curie - Centre de Protonthérapie d'Orsay) renouvelle ses logiciels dédiés au traitement des patients par protonthérapie, technique de radiothérapie utilisant des faisceaux de protons. Les hautes énergies utilisées durant les traitements, ainsi que la précision offerte par les caractéristiques des particules de proton, nécessitent une mise en place du patient plus précise qu'en radiothérapie classique. Le sujet de cette thèse est né de ces problématiques, puisqu'il vise à utiliser les informations RX intrinsèques aux images, et renouveler l'offre logicielle liée à la planification de la dose. Aujourd'hui, le deuxième objectif est parfaitement rempli, puisque le logiciel Isogray est utilisé en routine clinique, et les premiers patients planifiés avec son aide ont d'ores et déjà été traités. Le premier objectif quant à lui, même s'il a pu progresser de manière significative, n'a pas pu aboutir dans le temps imparti pour la thèse, des mises au point ainsi que des tests cliniques étant encore nécessaires. Cependant, les premiers résultats obtenus sont encourageants et ont permis de soulever les premiers problèmes à résoudre, Cette thèse s'inscrit dans le cadre d'un partenariat entre l'ICPO et la société DOSIsoft, leader européen des logiciels de planification de traitement, fournissant les logiciels dernière génération utilisés à l'ICPO. Le savoir faire du laboratoire TSI (Traitement du Signal et de l'Image) de Télécom ParisTech vient s'ajouter à ce partenariat, apportant une plus-value scientifique conséquente.
8

Modélisation et analyse des étapes de simulation des émetteurs de positons générés lors des traitements en protonthérapie - du faisceau à la caméra TEP - pour le suivi des irradiations

Van Ngoc Ty, Claire 19 December 2012 (has links) (PDF)
La protonthérapie est une technique innovante de traitement des cancers dans les zones critiques, telles que les yeux ou la base du crâne. Même si le phénomène physique d'interactions des protons dans les tissus est bien connu et présente des avantages pour la protonthérapie, il existe des incertitudes sur le parcours des protons liées aux hétérogénéités des tissus traversés en situation clinique et liées au calcul des paramètres du faisceau dans le planning de traitement qui contrebalancent les avantages théoriques des protons pour la délivrance de la dose. Des méthodes de contrôle de qualité de l'irradiation ont donc été proposées. La plupart reposent sur l'exploitation de la cartographie des émetteurs de positons générés lors de l'irradiation. Ceux-ci peuvent être détectés et quantifiés à l'aide de la tomographie par émission de positons (TEP), une technique d'imagerie médicale utilisée principalement pour établir le bilan d'extension des cancers par imagerie. Des acquisitions TEP ont donc été proposées et validées sur des fantômes et chez des patients après protonthérapie pour le contrôle du parcours des protons. Le contrôle s'effectue en comparant la distribution radioactive mesurée en TEP et la distribution β+ simulée. La simulation de l'activité positronique générée par les protons dans le milieu traversé peut être décomposée en plusieurs étapes : une étape de simulation du faisceau de protons, une étape de modélisation des interactions des protons dans l'objet irradié et une étape d'acquisition TEP. Différentes modélisations de ces étapes sont possibles. Au cours de cette thèse, nous avons proposé plusieurs modélisations pour les 3 étapes et nous avons évalué l'apport pour la qualité du contrôle de l'irradiation. Nous avons restreint notre évaluation à la vérification du parcours des protons. Ce travail de thèse s'appuie sur des irradiations en milieu homogène et inhomogène (dans un modèle de tête) réalisé au centre de protonthérapie d'Orsay. Les objets irradiés ont été transportés dans le Service Hospitalier Frédéric Joliot pour l'acquisition TEP. Nous avons comparé l'incertitude sur le parcours des protons à partir des modélisations de la distribution β+ obtenues : 1) En modélisant l'irradiation par un faisceau de protons sous une forme simplifiée et par simulation Monte Carlo. En modélisant la production des émetteurs β+ dans les tissus par simulation Monte Carlo avec le logiciel GEANT4 en incluant les modèles de physiques des versions 9.2 et 9.4 et en utilisant des sections efficaces ; 2) En modélisant l'acquisition TEP avec une modélisation simplifiée et une modélisation Monte Carlo de l'acquisition par la caméra TEP ; 3) Les résultats montrent qu'une modélisation simplifiée du faisceau n'affecte pas l'estimation du parcours des protons. La modélisation Monte-Carlo de la caméra permet de mieux modéliser le bruit présent dans le signal TEP mesuré en milieu homogène. Des résultats préliminaires de la modélisation de la caméra TEP sont présentés dans un modèle de tête (inhomogène). En conclusion, une modélisation simplifiée de la caméra TEP permet d'évaluer le parcours des protons en milieu homogène à 1 mm près, qui est équivalent à la reproductibilité de la mesure TEP post-irradiation telle qu'elle est mesurée par Knopf et al. (2008).
9

Influence de la composition chimique des tissus humains sur les dépôts de dose en hadronthérapie

Batin, E. 23 June 2008 (has links) (PDF)
Les systèmes de planification dosimétrique utilisent pour calculer le dépôt de dose dans l'être humain d'une part une description des tissus basée sur l'imagerie scanographique et d'autre part une description de l'interaction du faisceau reposant sur une équivalence eau des tissus, à laquelle peut s'ajouter un facteur de diffusion. Du fait du type de rayonnement et de l'énergie utilisés en scanographie, les nombres CT doivent être convertis en facteurs d'équivalence eau avant d'être utilisés par le système de planification.<br />Une détermination par simulation GEANT4 du facteur d'équivalence eau en fonction des nombres CT est proposée. Les facteurs de 77 tissus humains ont été déterminés pour un faisceau de protons de 135 MeV et de 12C de 290 MeV/A et comparés à ceux rapportés dans la littérature. Aux erreurs de détermination (<1.5%) s'ajoutent les incertitudes liées à l'acquisition des nombres CT, ces dernières pouvant atteindre 2%.<br />Les facteurs d'équivalence eau ont ensuite été utilisés pour convertir les courbes d'énergie déposée obtenues dans un tissu à celles obtenues dans l'eau et inversement. Ces courbes d'énergie déposée recalées ont été comparées aux courbes d'énergie déposée issues de la simulation. Pour les deux faisceaux, un accord en position inférieur à 0.5 mm est atteint. Des différences selon les tissus apparaissent au niveau de l'énergie maximale déposée. Elles peuvent atteindre 3% pour les tissus osseux et le faisceau de protons et varient entre 1.5% et 3.5% pour le faisceau de 12C, quel que soit le tissu. Une amélioration significative des recalages de l'énergie déposée en deux dimensions est obtenue en introduisant un facteur supplémentaire permettant de corriger de la diffusion.
10

Evolution des modèles de calcul pour le logiciel de planification de la dose en protonthérapie / Evolution of dose calculation models for protontherapy treatment planning

Vidal, Marie 07 October 2011 (has links)
Ce travail a été mené dans un contexte de collaboration étroite entre le Centre de Protonthérapie d’Orsay de l’Institut Curie (ICPO), Dosisoft et le laboratoire Creatis afin de mettre en place un nouveau modèle de calcul de dose pour la nouvelle salle de traitement de l’ICPO. Le projet de rénovation et d’agrandissement de ce dernier a permis l’installation d’un nouvel accélérateur ainsi que d’une nouvelle salle de traitement équipée d’un bras isocentrique de la société IBA, dans le but de diversifier les localisations des cancers traités à l’ICPO. Le premier objectif de cette thèse est de développer un ensemble de méthodologies et de nouveaux algorithmes liés au calcul de dose pour les adapter aux caractéristiques spécifiques des faisceaux délivrés par la nouvelle machine IBA, avec comme finalité de les inclure dans le logiciel Isogray de DOSIsoft. Dans un premier temps, la technique de la double diffusion est abordée en tenant compte des différences avec le système passif des lignes fixes de l’ICPO. Dans un deuxième temps, une modélisation est envisagée pour les modalités de faisceaux balayés. Le deuxième objectif est d’améliorer les modèles de calcul de dose Ray-Tracing et Pencil-Beam existants. En effet, le collimateur personnalisé du patient en fin de banc de mise en forme du faisceau pour les techniques de double diffusion et de balayage uniforme provoque une contamination de la dose délivrée au patient. Une méthodologie de réduction de cet effet a été mise en place pour le système passif de délivrance du faisceau, ainsi qu’un modèle analytique décrivant la fonction de contamination, dont les paramètres ont été validés grâce à des simulations Monte Carlo sur la plateforme GATE. Il est aussi possible d’appliquer ces méthodes aux systèmes actifs. / This work was achieved in collaboration between the Institut Curie Protontherapy Center of Orsay (ICPO), the DOSIsoft company and the CREATIS laboratory, in order to develop a new dose calculation model for the new ICPO treatment room. A new accelerator and gantry room from the IBA company were installed during the up-grade project of the protontherapy center, with the intention of enlarging the cancer localizations treated at ICPO. Developing a package of methods and new dose calculation algorithms to adapt them to the new specific characteristics of the delivered beams by the IBA system is the first goal of this PhD work. They all aim to be implemented in the DOSIsoft treatment planning software, Isogray. First, the double scattering technique is treated in taking into account major differences between the IBA system and the ICPO fixed beam lines passive system. Secondly, a model is explored for the scanned beams modality. The second objective of this work is improving the Ray-Tracing and Pencil-Beam dose calculation models already in use. For the double scattering and uniform scanning techniques, the patient personalized collimator at the end of the beam line causes indeed a patient dose distribution contamination. A reduction method of that phenomenon was set up for the passive beam system. An analytical model was developed which describes the contamination function with parameters validated through Monte-Carlo simulations on the GATE platform. It allows us to apply those methods to active scanned beams.

Page generated in 0.0415 seconds