• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neutron measurements in a proton therapy facility and comparison with Monte Carlo shielding simulations

De Smet, Valérie 09 September 2016 (has links)
Proton therapy uses proton beams with energies of 70 – 230 MeV to treat cancerous tumours very effectively, while preserving surrounding healthy tissues as much as possible. During nuclear interactions of these protons with matter, secondary neutrons can be produced. These neutrons can have energies ranging up to the maximum energy of the protons and can thus be particularly difficult to attenuate. In fact, the rooms of a proton therapy facility are generally surrounded by concrete walls of at least ~2 m in thickness, in order to protect the members of the staff and the public from the stray radiation. Today, the design of the shielding walls is generally based on Monte Carlo simulations. Amongst the numerous parameters on which these simulations depend, some are difficult to control and are therefore selected in a conservative manner. Despite these conservative choices, it remains important to carry out accurate neutron dose measurements inside proton therapy facilities, in order to assess the effectiveness of the shielding and the conservativeness of the simulations. There are, however, very few studies in literature which focus on the comparison of such simulations with neutron measurements performed outside the shielding in proton therapy facilities. Moreover, the published measurements were not necessarily acquired with detectors that possess a good sensitivity to neutrons with energies above 20 MeV, while these neutrons actually give an important contribution to the total dose outside the shielding. A first part of this work was dedicated to the study of the energy response function of the WENDI-2, a rem meter that possesses a good sensitivity to neutrons of more than 20 MeV. The WENDI-2 response function was simulated using the Monte Carlo code MCNPX and validation measurements were carried out with 252Cf and AmBe sources as well as high-energy quasi-monoenergetic neutron beams. Then, WENDI-2 measurements were acquired inside and outside four rooms of the proton therapy facility of Essen (Germany). MCNPX simulations, based on the same conservative choices as the original shielding design simulations, were carried out to calculate the neutron spectra and WENDI-2 responses in the measurement positions. A relatively good agreement between the simulations and the measurements was obtained in front of the shielding, whereas overestimates by at least a factor of 2 were obtained for the simulated responses outside the shielding. This confirmed the conservativeness of the simulations with respect to the neutron fluxes transmitted through the walls. Two studies were then carried out to assess the sensitivity of the MCNPX simulations to the defined concrete composition and the selected physics models for proton and neutron interactions above 150 MeV. Both aspects were found to have a significant impact on the simulated neutron doses outside the shielding. Finally, the WENDI-2 responses measured outside the fixed-beam treatment room were also compared to measurements acquired with an extended-range Bonner Sphere Spectrometer and a tissue-equivalent proportional counter. A satisfactory agreement was obtained between the results of the three measurement techniques. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
2

Evaluations des doses dues aux neutrons secondaires reçues par des patients de différents âges traités par protonthérapie pour des tumeurs intracrâniennes / Secondary neutron doses received by patients of different ages during intracranial proton therapy treatments

Sayah, Rima 19 October 2012 (has links)
La protonthérapie est une technique avancée de radiothérapie qui permet de délivrer une dose élevée à la tumeur, tout en épargnant au mieux les tissus sains environnants, grâce aux propriétés balistiques des protons. Cependant, des particules secondaires, principalement des neutrons, sont créées par les interactions nucléaires que les protons initient dans les composantes de la ligne et de la salle de traitement, ainsi que dans le patient. Ces neutrons secondaires conduisent à des doses indésirables déposées aux tissus sains situés à distance du volume cible, dont la conséquence pourrait être une augmentation du risque de développement de seconds cancers chez les patients traités et en particulier chez les enfants. Cette thèse a pour objectif d’évaluer par calcul les doses dues aux neutrons secondaires reçues par des patients de différents âges traités à l’Institut Curie- centre de protonthérapie d’Orsay (ICPO) par des faisceaux de protons de 178 MeV pour des tumeurs intracrâniennes. Les traitements sont réalisés dans la nouvelle salle de l’ICPO équipée d’un bras isocentrique IBA. Les composants de la ligne et de la salle de traitement ainsi que la source de protons ont été modélisés à l’aide du code de calcul Monte Carlo MCNPX. Le modèle obtenu a été validé par une série de comparaisons de calculs à des mesures expérimentales. Ces comparaisons ont concerné : a) les distributions de doses latérales et en profondeur du faisceau de protons primaire dans un fantôme d’eau, b) la spectrométrie des neutrons en une point de la salle, c) les équivalents de doses ambiants en différents points de la salle et d) les doses à distance du volume cible au sein d’un fantôme physique anthropomorhe. Des accords satisfaisants ont été obtenus entre les calculs et les mesures, permettant ainsi de considérer le modèle comme validé.Les fantômes hybrides-voxels de différents âges, développés par l’Université de Floride ont été ensuite introduits dans le modèle et des calculs de doses dues aux neutrons secondaires aux différents organes de ces fantômes ont été réalisés. Les doses diminuent lorsque la distance de l’organe au champ de traitement augmente et lorsque l’âge du patient augmente. Un patient de 1 an peut recevoir des doses deux fois plus élevées qu’un adulte. La dose maximale, égale à 16,5 mGy pour un traitement délivrant 54 Gy à la tumeur, est reçue, pour le fantôme de 1 an, par les glandes salivaires. Une incidence latérale (gauche ou droite) du faisceau de protons peut délivrer des doses deux fois plus élevées qu’une incidence supérieure (gauche ou droite), et quatre fois plus élevées qu’une incidence antéro-supérieure pour certains organes. Des doses équivalentes aux organes dues aux neutrons ont été aussi calculées. Les facteurs de pondération wR des neutrons varient entre 4 et 10, et les doses équivalentes atteignent au maximum 155 mSv au cours d’un traitement complet. / Proton therapy is an advanced radiation therapy technique that allows delivering high doses to the tumor while saving the healthy surrounding tissues due to the protons’ ballistic properties. However, secondary particles, especially neutrons, are created during protons’ nuclear reactions in the beam-line and the treatment room components, as well as inside the patient. Those secondary neutrons lead to unwanted dose deposition to the healthy tissues located at distance from the target, which may increase the secondary cancer risks to the patients, especially the pediatric ones. The aim of this work was to calculate the neutron secondary doses received by patients of different ages treated at the Institut Curie-centre de Protonthérapie d’Orsay (ICPO) for intracranial tumors, using a 178 MeV proton beam. The treatments are undertaken at the new ICPO room equipped with an IBA gantry. The treatment room and the beam-line components, as well as the proton source were modeled using the Monte Carlo code MCNPX. The obtained model was then validated by a series of comparisons between model calculations and experimental measurements. The comparisons concerned: a) depth and lateral proton dose distributions in a water phantom, b) neutron spectrometry at one position in the treatment room, c) ambient dose equivalents at different positions in the treatment room and d) secondary absorbed doses inside a physical anthropomorphic phantom. A general good agreement was found between calculations and measurements, thus our model was considered as validated. The University of Florida hybrid voxelized phantoms of different ages were introduced into the MCNPX validated model, and secondary neutron doses were calculated to many of these phantoms’ organs. The calculated doses were found to decrease as the organ’s distance to the treatment field increases and as the patient’s age increases. The secondary doses received by a one year-old patient may be two times higher than the doses received by an adult. A maximum dose of 16.5 mGy for a whole treatment delivering 54 Gy to the tumor was calculated to the salivary glands of a one year-old phantom. The calculated doses for a lateral proton beam incidence (left or right) may be, for some organs, two times higher than doses for an upper incidence (left or right) and four times higher than doses for an antero-superior incidence. Neutron equivalent doses were also calculated for some organs. The neutron weighting factors wR were found to vary between 4 and 10 and the equivalent doses for the considered organs reached at maximum 155 mSv during a whole treatment.

Page generated in 0.0817 seconds