• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Designed for Better Control: Using Kinematic and Dynamic Metrics to Optimize Robot Manipulator Design

Morrell, John R. 17 August 2023 (has links) (PDF)
In the field of control theory, optimal performance is generally defined as the best possible controlled performance given a static, unchangeable plant system. However, principled design of the underlying system can make designing effective controllers easier and dramatically improve the final control performance beyond what any finely tuned controller could achieve alone. This work develops performance metrics for serial robot arms which help guide the design and optimization of the structure of the arm to achieve greater final performance. First, a kinematic (motion-based) metric called the Actuator Independence Metric (AIM) measures the uniqueness of the movement capabilities of the different joints in a robot arm. Arms which are optimized with respect to the AIM exhibit a greater freedom of movement. In particular, it is shown that the AIM score of a robot correlates strongly with their ability to find solutions to the Inverse Kinematics problem, and that redundant arms with a high AIM score have more useful null-spaces with significant ability to change configuration while maintaining a fixed end-effector pose. Second, a dynamic metric called the Acceleration Radius is explored. The acceleration radius measures the maximum acceleration which a robot arm is capable of generating in any direction. An efficient algorithm for calculating the acceleration radius is developed which exploits the geometry of the mapping from joint torques to acceleration. A design optimization is carried out to demonstrate how the acceleration radius predicts the dynamic movement capabilities of robot arms. It is shown that arms which are optimal with respect to the acceleration radius can follow faster paths through a task space. The metrics developed in this thesis can be used to create customized robot arm designs for specific tasks, which will exhibit desirable control performance.
2

Co-manipulation sûre d’un robot de protonthérapie / Safe physical human-robot interaction for a protontherapy robotic system

Baumeyer, Julien 28 June 2017 (has links)
Cette thèse se place dans un contexte médical de traitements oncologiques, plus particulièrement en protonthérapie robotisée. L’objectif de cette thèse, réalisée sous contrat Cifre avec la société LEONI CIA Cable Systems, est le développement d’une commande en co-manipulation sûre dédiée à un robot médical sériel. Cette commande doit permettre à un opérateur de manipuler intuitivement et précisément un robot de grande inertie positionneur de patients. Les contributions portent sur deux axes, d’une part le développement et l’implémentation sur le robot Orion de l’entreprise LEONI CIA Cable Systems d’une commande en admittance ainsi que la comparaison de trois dispositifs haptiques, et d’autre part le développement d’un mécanisme de détection de collisions proprioceptif permettant l’amélioration de la sécurité de fonctionnement. À partir d’une revue de la littérature concernant les commandes compliantes, nous avons développé et implémenté une commande en admittance dédiée au robot Orion en tenant compte de la discrétisation de la commande par le contrôleur spécifique de ce robot. Une expérience de comparaison sur le robot nous a permis d’identifier le dispositif haptique le mieux adapté au cas clinique considéré. Après une étude de l’état de l’art des mécanismes de détection de collisions, une approche fréquentielle de la modélisation du couple axial prenant en compte les rapports de réduction élevés et de technologie différente du robot a été proposée. Elle permet de modéliser finement le couple théoriquement fourni par les moteurs ; celui-ci est ensuite comparé avec la mesure du couple réellement produit afin de détecter une éventuelle collision. / This PhD thesis takes place in a medical context of oncological treatments, more particularly in robotised protontherapy. The objective of this thesis, carried out under a CIFRE contract with LEONI CIA Cable Systems, is the development of a safe comanipulation control dedicated to a serial medical robot. This control law should allow an operator to intuitively and precisely manipulate a robot of high inertia for accurate patients positioning. The contributions of this thesis focus on the development and implementation of an admittance-controlled Orion robot from LEONI CIA Cable Systems and the comparison of three haptic devices, and on the other hand, on the development of a proprioceptive collision detection mechanism allowing the improvement of operational safety. Based on a review of the literature on compliant controls, we have developed and implemented an admittance control approach dedicated to the Orion robot, taking into account the discretization of the control by the controller specific to this robot. A comparison experiment on the robot allowed us to identify the haptic device best suited to the clinical case considered. Based on a state of the art of collision detection mechanisms analysis, a frequency approach of the modeling of the axial torque taking into account the high reduction ratios and different robot technology has been proposed. It allows us to finely model the torque theoretically provided by the motors ; The latter is then compared with the measurement of the torque actually produced in order to detect a possible collision.
3

A differential-based parallel force/velocity actuation concept : theory and experiments

Rabindran, Dinesh, 1978- 05 February 2010 (has links)
Robots are now moving from their conventional confined habitats such as factory floors to human environments where they assist and physically interact with people. The requirement for inherent mechanical safety is overarching in such human-robot interaction systems. We propose a dual actuator called Parallel Force/Velocity Actuator (PFVA) that combines a Force Actuator (FA) (low velocity input) and a Velocity Actuator (VA) (high velocity input) using a differential gear train. In this arrangement mechanical safety can be achieved by limiting the torque on the FA and thus making it a backdriveable input. In addition, the kinematic redundancy in the drive can be used to control output velocity while satisfying secondary operational objectives. Our research focus was on three areas: (i) scalable parametric design of the PFVA, (ii) analytical modeling of the PFVA and experimental testing on a single-joint prototype, and (iii) generalized model formulation for PFVA-driven serial robot manipulators. In our analysis, the ratio of velocity ratios between the FA and the VA, called the relative scale factor, emerged as a purely geometric and dominant design parameter. Based on a dimensionless parametric design of PFVAs using power-flow and load distributions between the inputs, a prototype was designed and built using commercial-off-the-shelf components. Using controlled experiments, two performance-limiting phenomena in our prototype, friction and dynamic coupling between the two inputs, were identified. Two other experiments were conducted to characterize the operational performance of the actuator in velocity-mode and in what we call ‘torque-limited’ mode (i.e. when the FA input can be backdriven). Our theoretical and experimental results showed that the PFVA can be mechanical safe to both slow collisions and impacts due to the backdriveability of the FA. Also, we show that its kinematic redundancy can be effectively utilized to mitigate low-velocity friction and backlash in geared mechanisms. The implication at the system level of our actuator level analytical and experimental work was studied using a generalized dynamic modeling framework based on kinematic influence coefficients. Based on this dynamic model, three design case studies for a PFVA-driven serial planar 3R manipulator were presented. The major contributions of this research include (i) mathematical models and physical understanding for over six fundamental design and operational parameters of the PFVA, based on which approximately ten design and five operational guidelines were laid out, (ii) analytical and experimental proof-of-concept for the mechanical safety feature of the PFVA and the effective utilization of its kinematic redundancy, (iii) an experimental methodology to characterize the dynamic coupling between the inputs in a differential-summing mechanism, and (iv) a generalized dynamic model formulation for PFVA-driven serial robot manipulators with emphasis on distribution of output loads between the FA and VA input-sets. / text
4

Développement d'une loi de commande avancée pour la maitrise des vibrations des robots sériels à liaisons flexibles / Development of an advanced control law for vibration control of flexible link serial robots

Farah, Jacques 29 January 2019 (has links)
De nos jours, les exigences en productivité dans le monde industriel imposent aux robots un comportement optimal en termes de précision géométrique et dynamique, et en termes de temps de réponse. Ainsi, la présence des flexibilités dans les liaisons pivots des structures mécaniques légères se déplaçant à grande vitesse et sous charges importantes peut limiter dynamiquement la précision et le temps de stabilisation sur la pose finale du robot. La problématique traitée dans ces travaux concerne la maîtrise des vibrations des robots sériels à liaisons flexibles durant les opérations de prise et dépose (Pick and Place).Dans ces travaux, nous effectuons une modélisation et une identification expérimentale des paramètres géométriques et dynamique d’un robot à liaisons flexible. Ce modèle sera utilisé dans la synthèse d’une loi de commande basée modèle dédiée aux robots à flexibilité articulaire. Cette stratégie permet de réduire les vibrations lors des phases exigeantes dynamiquement. Des simulations sur un robot Scara sont alors conduites pour valider la pertinence de cette loi de commande qui intègre un modèle des flexibilités présentes dans les liaisons pivots dans le schéma de commande. Nous appliquons sur le même simulateur du robot à liaisons flexibles trois autres stratégies de commande afin de faire une comparaison (commande PD, commande dédiée aux robots rigides et commande ne considérant pas les amortissements). Le schéma de la loi de commande basée modèle permet de respecter la précision de pose finale avec une diminution du temps de stabilisation. Finalement, Le calcul de l’erreur d’asservissement nous a permis de constater l’influence des erreurs de modélisation de la flexibilité sur la précision de la tâche. Dans ce contexte, une analyse de sensibilité aux paramètres influents est établie. / Nowadays, the demand of productivity in the industrial world of robotics require robots to behave optimally in terms of geometric and dynamic accuracy and response time. Thus, the presence of flexibilities in rotational joints can dynamically limit the position control of manipulators having lighter arms, higher payload-to-weight ratio and doing tasks at high speed. The problem addressed in this work concerns the vibration control of serial robots with flexible joints performing Pick and Place tasks. In this work, we carry out modelling and experimental identification of the geometric and dynamic parameters of a robot with flexible joints. This model is then used in the synthesis of a model-based control law dedicated to manipulators with flexible joints. This strategy reduces vibrations resulting from joints sensitivity during dynamically demanding phases. Simulations on a Scara robot are then conducted to validate the relevance of the proposed control law which integrates joint flexibilities in the form of a feedback loop in the control diagram. To this end, three other control strategies (PD control, control dedicated to rigid structures and control not considering damping) are applied to the same simulator in order to make a comparative analysis. The diagram of the model-based control law allows to respect the set point with a reduction in the stabilization time.Finally, the calculation of the servo error allowed us to see the influence of flexibility modeling errors on the accuracy of the task. In this context, the sensitivity of this control law is evaluated through a sensitivity analysis.

Page generated in 0.0434 seconds