• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 189
  • 32
  • 20
  • 17
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 346
  • 346
  • 113
  • 69
  • 67
  • 46
  • 42
  • 40
  • 40
  • 39
  • 39
  • 37
  • 35
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Effect of source x-ray energy spectra on the detection of fluorescence photons from gold nanoparticles

Manohar, Nivedh Harshan 18 November 2011 (has links)
X-ray fluorescence is a well-understood phenomenon in which irradiation of certain materials, such as gold, with x-rays causes the emission of secondary x-rays with characteristic energies. By performing computed tomography using these fluorescence x-rays, the material of interest can be imaged inside an object. Our research group has already demonstrated that x-ray fluorescence computed tomography (XFCT) imaging using a typical 110 kVp microfocus x-ray tube is feasible for a small animal-sized object containing a distribution of a solution of low concentration gold nanoparticles. The primary goal of this thesis work was to study the effect of source x-ray energy spectra on gold fluorescence detection using the XFCT system. A computational approach using the Monte Carlo method was used. First, a computational model was created using the Monte Carlo N-Particle (MCNP) transport code based on the experimental setup of the pre-existing XFCT system. Simulations were run to verify the validity of the MCNP model as an accurate representation of the actual system by means of comparison with experimentally-obtained data. Finally, the model was used for further purely computational work. In the MCNP model, the source spectrum was changed to reflect several theoretical and experimentally obtained options. The effect of these changes on gold fluorescence production was documented and quantified using the signal-to-background ratio and other qualitative measures. The results from this work provided clues on how to improve the detection of fluorescence photons from gold nanoparticle-loaded objects using the XFCT system. This will benefit future research on the development of the XFCT system in the context of making it more feasible for gold nanoparticle-based preclinical molecular imaging applications.
132

Exploring the Neural Basis of Working Memory: Using Probabilistic Tractography to Examine White Matter Integrity and its Association to Working Memory in Paediatric Brain Tumor Patients

Law, Nicole 15 February 2010 (has links)
Paediatric posterior fossa tumors are often effectively controlled with a combination of radiation, chemotherapy and surgery. However, therapeutic craniospinal radiation has been associated with widespread cognitive late effects. Working memory is one such cognitive ability that has yet to be fully examined in this clinical population. Bilateral tracts connecting the cerebellum with the DLPFC were delineated using DTI tractography in all participants, replicating the cerebrocerebellar pathway outlined in an animal model. There were observable differences in white matter integrity (quantified by DTI measures of anisotropy, and mean, axial, and radial diffusivity) of the cerebellum-DLPFC pathway in patients versus controls. Additionally, working memory deficits that were found in patients were correlated with DTI indices pertaining to the cerebellum-DLPFC pathway. Therefore, this thesis is the first to explore the possible relations between white matter integrity of this pathway following treatment for paediatric posterior fossa tumors and working memory function.
133

A Platform to Monitor Tumor Cellular and Vascular Response to Radiation Therapy by Optical Coherence Tomography and Fluorescence Microscopy in vivo

Leung, Michael Ka Kit 10 January 2011 (has links)
Radiotherapy plays a significant role in cancer treatment, and is thought to be curative by mainly killing tumor cells through damage to their genetic material. However, recent findings indicate that the tumor’s vascular blood supply is also a major determinant of radiation response. The goals of this thesis are to: (1) develop an experimental platform for small animals to deliver ionizing radiation and perform high-resolution optical imaging to treatment targets, and (2) use this toolkit to longitudinally monitor the response of tumors and the associated vasculature. The thesis has achieved: (1) customization of a novel micro-irradiator for mice, (2) technical development of an improved optical coherence tomography imaging system, (3) comprehensive experimental protocol and imaging optimization for optical microscopy in a specialized animal model, and (4) completion of a feasibility study to demonstrate the capabilities of the experimental platform in monitoring the response of tumor and vasculature to radiotherapy.
134

Short and Longer-term Effects of Photodynamic Therapy and Combination Treatments on Healthy and Metastatically-involved Vertebrae

Lo, Victor 14 December 2011 (has links)
Current treatment for spinal metastasis involves a multimodal approach, including bisphosphonates and radiation therapy. Yet, tumour response varies considerably, thus novel treatments or combination therapies are needed to treat these metastases while preserving stability and integrity of the spinal column. Photodynamic therapy (PDT) has been shown to be successful in destroying vertebral osteolytic tumours and enhancing vertebral structure, particularly in combination with bisphosphonates. This thesis aims to evaluate the longer-term effects of PDT alone and in combination with bisphosphonate or radiation therapy on healthy vertebrae, and the short-term effects of PDT combined with radiation therapy on healthy and metastatically-involved vertebrae. The benefits of PDT on vertebral structure, both at short-term and longer-term time-points, were greatest in combination with previous bisphosphonate therapy. Similar effects, to a lesser magnitude, were seen with PDT in combination with radiation therapy. This work supports future translation of PDT for the treatment of spinal metastases.
135

A Platform to Monitor Tumor Cellular and Vascular Response to Radiation Therapy by Optical Coherence Tomography and Fluorescence Microscopy in vivo

Leung, Michael Ka Kit 10 January 2011 (has links)
Radiotherapy plays a significant role in cancer treatment, and is thought to be curative by mainly killing tumor cells through damage to their genetic material. However, recent findings indicate that the tumor’s vascular blood supply is also a major determinant of radiation response. The goals of this thesis are to: (1) develop an experimental platform for small animals to deliver ionizing radiation and perform high-resolution optical imaging to treatment targets, and (2) use this toolkit to longitudinally monitor the response of tumors and the associated vasculature. The thesis has achieved: (1) customization of a novel micro-irradiator for mice, (2) technical development of an improved optical coherence tomography imaging system, (3) comprehensive experimental protocol and imaging optimization for optical microscopy in a specialized animal model, and (4) completion of a feasibility study to demonstrate the capabilities of the experimental platform in monitoring the response of tumor and vasculature to radiotherapy.
136

Short and Longer-term Effects of Photodynamic Therapy and Combination Treatments on Healthy and Metastatically-involved Vertebrae

Lo, Victor 14 December 2011 (has links)
Current treatment for spinal metastasis involves a multimodal approach, including bisphosphonates and radiation therapy. Yet, tumour response varies considerably, thus novel treatments or combination therapies are needed to treat these metastases while preserving stability and integrity of the spinal column. Photodynamic therapy (PDT) has been shown to be successful in destroying vertebral osteolytic tumours and enhancing vertebral structure, particularly in combination with bisphosphonates. This thesis aims to evaluate the longer-term effects of PDT alone and in combination with bisphosphonate or radiation therapy on healthy vertebrae, and the short-term effects of PDT combined with radiation therapy on healthy and metastatically-involved vertebrae. The benefits of PDT on vertebral structure, both at short-term and longer-term time-points, were greatest in combination with previous bisphosphonate therapy. Similar effects, to a lesser magnitude, were seen with PDT in combination with radiation therapy. This work supports future translation of PDT for the treatment of spinal metastases.
137

High-Throughput Screening for Novel Anti-cancer Radiosensitizers for Head and Neck Cancer

Ito, Emma 18 January 2012 (has links)
Despite advances in therapeutic options for head and neck cancer (HNC), treatment-associated toxicities and overall clinical outcomes have remained disappointing. Even with radiation therapy (RT), which remains the primary curative modality for HNC, the most effective regimens achieve local control rates of 45-55%, with disease-free survival rates of only 30-40%. Thus, the development of novel strategies to enhance tumor cell killing, while minimizing damage to the surrounding normal tissues, is critical for improving cure rates with RT. Accordingly, we sought to identify novel radiosensitizing therapies for HNC, exploiting a high-throughput screening (HTS) approach. Initially, a cell-based phenotype-driven HTS of ~2,000 commercially available natural products was conducted, utilizing the short-term MTS cell viability assay. Cetrimonium bromide (CTAB) was identified as a novel anti-cancer agent, exhibiting in vitro and in vivo efficacy against several HNC models, with minimal effects on normal fibroblasts. Two major limitations of our findings, however, were that CTAB did not synergize with radiation, nor was its precise cellular target(s) elucidated. Consequently, an alternative strategy was proposed involving a target-driven RNAi-based HTS. Since the colony formation assay (CFA) is the gold standard for measuring cellular effects of radiation in vitro, an automated high-throughput colony-formation read-out was developed as a more appropriate end-point for radiosensitivity. Although successful as a tool for the discovery of potent anti-cancer cytotoxics, a technical drawback was its limited dynamic range. Thus, the BrdU incorporation assay, which measures replicative DNA synthesis and is a viable CFA alternative, was employed. From an RNAi-based screen of ~7000 human genes, uroporphyrinogen decarboxylase (UROD), a key regulator of heme biosynthesis, was identified as a novel tumor-selective radiosensitizing target against HNC in vitro and in vivo. Radiosensitization appeared to be mediated via tumor-selective enhancement of oxidative stress from perturbation of iron homeostasis and increased ROS production. UROD was significantly over-expressed in HNC patient biopsies, wherein lower pre-RT UROD levels correlated with improved disease-free survival, suggesting that UROD expression could also be a potential predictor for radiation response. Thus, employing a HTS approach, this thesis identified two novel therapeutic strategies with clinical potential in the management of HNC.
138

Exploring the Neural Basis of Working Memory: Using Probabilistic Tractography to Examine White Matter Integrity and its Association to Working Memory in Paediatric Brain Tumor Patients

Law, Nicole 15 February 2010 (has links)
Paediatric posterior fossa tumors are often effectively controlled with a combination of radiation, chemotherapy and surgery. However, therapeutic craniospinal radiation has been associated with widespread cognitive late effects. Working memory is one such cognitive ability that has yet to be fully examined in this clinical population. Bilateral tracts connecting the cerebellum with the DLPFC were delineated using DTI tractography in all participants, replicating the cerebrocerebellar pathway outlined in an animal model. There were observable differences in white matter integrity (quantified by DTI measures of anisotropy, and mean, axial, and radial diffusivity) of the cerebellum-DLPFC pathway in patients versus controls. Additionally, working memory deficits that were found in patients were correlated with DTI indices pertaining to the cerebellum-DLPFC pathway. Therefore, this thesis is the first to explore the possible relations between white matter integrity of this pathway following treatment for paediatric posterior fossa tumors and working memory function.
139

High-Throughput Screening for Novel Anti-cancer Radiosensitizers for Head and Neck Cancer

Ito, Emma 18 January 2012 (has links)
Despite advances in therapeutic options for head and neck cancer (HNC), treatment-associated toxicities and overall clinical outcomes have remained disappointing. Even with radiation therapy (RT), which remains the primary curative modality for HNC, the most effective regimens achieve local control rates of 45-55%, with disease-free survival rates of only 30-40%. Thus, the development of novel strategies to enhance tumor cell killing, while minimizing damage to the surrounding normal tissues, is critical for improving cure rates with RT. Accordingly, we sought to identify novel radiosensitizing therapies for HNC, exploiting a high-throughput screening (HTS) approach. Initially, a cell-based phenotype-driven HTS of ~2,000 commercially available natural products was conducted, utilizing the short-term MTS cell viability assay. Cetrimonium bromide (CTAB) was identified as a novel anti-cancer agent, exhibiting in vitro and in vivo efficacy against several HNC models, with minimal effects on normal fibroblasts. Two major limitations of our findings, however, were that CTAB did not synergize with radiation, nor was its precise cellular target(s) elucidated. Consequently, an alternative strategy was proposed involving a target-driven RNAi-based HTS. Since the colony formation assay (CFA) is the gold standard for measuring cellular effects of radiation in vitro, an automated high-throughput colony-formation read-out was developed as a more appropriate end-point for radiosensitivity. Although successful as a tool for the discovery of potent anti-cancer cytotoxics, a technical drawback was its limited dynamic range. Thus, the BrdU incorporation assay, which measures replicative DNA synthesis and is a viable CFA alternative, was employed. From an RNAi-based screen of ~7000 human genes, uroporphyrinogen decarboxylase (UROD), a key regulator of heme biosynthesis, was identified as a novel tumor-selective radiosensitizing target against HNC in vitro and in vivo. Radiosensitization appeared to be mediated via tumor-selective enhancement of oxidative stress from perturbation of iron homeostasis and increased ROS production. UROD was significantly over-expressed in HNC patient biopsies, wherein lower pre-RT UROD levels correlated with improved disease-free survival, suggesting that UROD expression could also be a potential predictor for radiation response. Thus, employing a HTS approach, this thesis identified two novel therapeutic strategies with clinical potential in the management of HNC.
140

Small field dose measurements with Gafchromic film

Underwood, Ryan John 09 April 2013 (has links)
Purpose: To examine the dosimetric characteristics of Gafchromic EBT3 film when measuring small fields of radiation, and compare it against other common radiation detectors. Methods and Materials: EBT3 film was placed in a solid water phantom and irradiated with 6MV photons, field sizes from 10x10cm2 down to 6x6mm2. The films were scanned with a Vidar DosimetryPRO Advantage Red scanner, and analyzed with RIT113 software. The films were also scanned at different orientations and times to quantify the discrepancies associated with scanning orientation and post-exposure darkening. The same fields were measured with a PTW TN30013 farmer chamber, an Exradin T1 cylindrical ion chamber, a PTW parallel plate ion chamber, and a Sun Nuclear Edge Detector (diode). Output factors were calculated for each detector and compared for accuracy. The output factors were measured from a Varian Clinac iX, Clinac 21EX, Trilogy, and TrueBeam; as well as a Novalis Tx. The outputs from different machines at different clinics were compared. Results: The EBT3 film and Edge Detector were the only detectors that succeeded in accurately measuring the output from all field sizes; the ion chambers were too large and failed for field sizes below 4x4cm2 due to volume averaging. The dose measured with the film increased by an average of 8.8% after one week post-irradiation. The dose measured was also reduced by an average of 4.4% by scanning the film in landscape orientation, as opposed to portrait orientation. It was shown that the output factors for the smallest field of 6x6mm2--successfully measured with film and diode--varied between 0.54-0.74 for five different machines at three different clinics. Conclusions: The feasibility of using Gafchromic EBT3 film to measure very small fields of radiation is confirmed. Of the other 4 detectors used, only the diode was shown to be capable of accurately measuring small fields of radiation. The need to optimize the film dosimetry process--including the time films are scanned post-irradiation, the consistency of the scanning orientation of the calibration and subsequent films, and the measurement procedure on the computer software--is highlighted.

Page generated in 0.0472 seconds