• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 161
  • 46
  • 28
  • 12
  • 8
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 305
  • 110
  • 67
  • 60
  • 50
  • 46
  • 39
  • 38
  • 37
  • 37
  • 32
  • 28
  • 28
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cellular localisation of type XIII collagen, and its induced expression in human neoplasias and corneal diseases

Väisänen, T. (Timo) 22 November 2005 (has links)
Abstract Type XIII collagen belongs to the group of transmembrane collagens. In this thesis the plasma membrane localisation and function of type XIII collagen have been studied using cell biological methods. Type XIII collagen was found to reside in focal adhesions. It appeared in these structures at a very early stage of their assembly and disappeared from them concurrently with focal adhesion proteins talin and vinculin. Insect cells expressing type XIII collagen showed an enhanced adhesion to certain matrix components. These localisation and adhesion data suggested that the function of type XIII collagen is related to cell adhesion. Supporting this, in tissues type XIII collagen was found to localise to cell-matrix and cell-cell adhesion structures. Type XIII collagen was found to be partly present in cholesterol-enriched membrane microdomains. With other membrane proteins this localisation has been shown to be linked to ectodomain shedding. The connection between the membrane microdomain localisation and the ectodomain shedding of type XIII collagen was also characterised, and it was demonstrated that manipulation of the cellular cholesterol level affected the efficiency of the ectodomain shedding. Additionally, insights into intracellular shedding of type XIII collagen in the Golgi apparatus were obtained. The study of type XIII collagen expression in human cancers revealed that it was enhanced especially in the desmoplastic cancer stroma. Since the increased expression of type XIII collagen was detected during the dysplastic stages, type XIII collagen may be involved in the early pathogenesis of cancer. The result indicated that type XIII collagen is involved in the matrix remodelling. In support of this, the cell culture experiments showed that the soluble type XIII collagen ectodomain altered the vitronectin-rich matrix unfavourable for cell adhesion and spreading. This may enhance cancer metastasis. Type XIII collagen expression was also induced in the remodelled stroma of keratoconus and corneal wounds. Data suggested that myofibroblasts were responsible for the increased expression of type XIII collagen in these situations. Therefore both in cancer and in the corneal pathologies studied, type XIII collagen expression was induced by the activated stromal cells.
22

High-Precision Particle Arrangement in Gold‒Polymer-Nanocomposites using RAFT Polymerization

Roßner, Christian 27 September 2016 (has links)
No description available.
23

Construction of DNA–polymer hybrids using intercalation interactions

Wilks, T.R., Pitto-Barry, Anaïs, Kirby, N., Stulz, E., O'Reilly, R.K. 17 December 2013 (has links)
no / Reversible addition–fragmentation chain transfer (RAFT) polymerisation was used to produce a range of polymers terminated with an acridine group, which intercalates efficiently into dsDNA; the structure of the polymer determines the nature and strength of the interaction. Using a short 63 base pair dsDNA, discrete and well-defined DNA–polymer hybrid nanoparticles were formed, which were characterised by dynamic light scattering, small-angle X-ray scattering and atomic force microscopy. / University of Warwick, EPSRC, Swiss National Science Foundation
24

Use of complementary nucleobase-containing synthetic polymers to prepare complex self-assembled morphologies in water

Kang, Y., Pitto-Barry, Anaïs, Rolph, M.S., Hua, Z., Hands-Portman, I., Kirby, N., O'Reilly, R.K. 06 April 2016 (has links)
Yes / Amphiphilic nucleobase-containing block copolymers with poly(oligo(ethylene glycol) methyl ether methacrylate) as the hydrophilic block and nucleobase-containing blocks as the hydrophobic segments were successfully synthesized using RAFT polymerization and then self-assembled via solvent switch in aqueous solutions. Effects of the common solvent on the resultant morphologies of the adenine (A) and thymine (T) homopolymers, and A/T copolymer blocks and blends were investigated. These studies highlighted that depending on the identity of the common solvent, DMF or DMSO, spherical micelles or bicontinuous micelles were obtained. We propose that this is due to the presence of A–T interactions playing a key role in the morphology and stability of the resultant nanoparticles, which resulted in a distinct system compared to individual adenine or thymine polymers. Finally, the effects of annealing on the self-assemblies were explored. It was found that annealing could lead to better-defined spherical micelles and induce a morphology transition from bicontinuous micelles to onion-like vesicles, which was considered to occur due to a structural rearrangement of complementary nucleobase interactions resulting from the annealing process. / European Research Council (ERC), University of Warwick, Engineering and Physical Sciences Research Council (EPSRC), National Science Foundation (U.S.) (NSF)
25

Micellar nanoparticles with tuneable morphologies through interactions between nucleobase-containing synthetic polymers in aqueous solution

Hua, Z., Pitto-Barry, Anaïs, Kang, Y., Kirby, N., Wilks, T.R., O'Reilly, R.K. 08 June 2016 (has links)
Yes / Herein, we report the preparation of nucleobase-containing synthetic amphiphilic diblock copolymers using RAFT polymerization. Well-defined spherical micelles can be formed in aqueous solutions through the self-assembly of the amphiphilic copolymers, with the nucleobase functionality sequestered in the core of the particles. Following assembly, copolymers with the complementary nucleobase were introduced into the preformed micellar solutions. This addition induced a change in nanostructure size and morphology and this reorganization was fully characterized by DLS, TEM, SLS and SAXS analysis. The insertion of copolymers with the complementary nucleobase into formed micelles was also confirmed by 1 H NMR and UV-vis spectroscopy. For micelles consisting of moderately short hydrophobic blocks, upon the addition of complementary nucleobase copolymer a decrease in size was observed but without any accompanying morphological change. For micelles formed from longer hydrophobic blocks, a morphological transition from spheres to cylinders and then to smaller spheres was observed upon increasing the amount of the complementary copolymer. This work highlights how complementary nucleobase interactions can be used to induce nanostructure reorganization and through a simple mixing process provide access to different nanostructure sizes and morphologies. / University of Warwick, China Scholarship Council (CSC), National Science Foundation (U.S.) (NSF), Engineering and Physical Sciences Research Council (EPSRC), European Research Council (ERC)
26

The hydrolytic behavior of N,N’-(dimethylamino) ethyl acrylate-functionalized polymeric stars

Rolph, M.S., Pitto-Barry, Anaïs, O'Reilly, R.K. 17 March 2017 (has links)
Yes / Well-defined N,N’-(dimethylamino)ethyl acrylate (DMAEA) functionalized polymeric stars have been synthesized via an arm-first approach. Utilizing reversible addition–fragmentation chain transfer polymerization, linear homopolymers (PEGA, PHEA) were chain extended with DMAEA and a divinyl crosslinker to produce a series of crosslinked polymeric stars. These stars were characterized using a range of techniques including NMR, SEC, DLS and TEM analysis. The hydrolytic behavior of the DMAEA when tethered within a micellar core was investigated by1 H NMR spectroscopy and was found to be strongly dependent on temperature. At elevated temperatures either a higher crosslinking density or a longer arm length was found to offer greater protection to the amine resulting in slower hydrolysis, with hydrolysis found to level off at a lower final percentage hydrolysis. In contrast, the composition and nature of the arm was found to have little impact on the hydrolysis, with the same trends relating to the effect of temperature and crosslinking density observed with a linear (HEA) and a brush (PEGA) arm. Additionally, the release of DMAE from the polymeric stars was successfully confirmed through the use of an enzymatic assay, producing a concentration of DMAE in good agreement with the theoretical concentration based on the 1H NMR spectroscopic analysis. / Atomic Weapons Establishment (AWE), EPSRC
27

Synthesis and Characterization of Tetraphenylethylene-Methacrylate-Based (Co)Polymers Using Controlled Radical Polymerization

Kamal, Albaraa 01 1900 (has links)
Aggregation-induced emission (AIE) is a phenomenon with many applications, such as chemical sensors, biological probes, immunoassay markets, and active layers in fabricating organic light-emitting diodes. AIE materials in polymers can enhance the emissivity of such materials while having the benefits of polymeric materials. This thesis examines the use of AIE polymers to study the effect of structure on the properties. This is done by first synthesizing a monomer with AIE characteristics, tetraphenylethylene-methacrylate (TPEMA). Secondly, polymerizing TPEMA using free and controlled radical polymerizations. Finally, the copolymerization of TPEMA with methyl methacrylate (MMA) to understand the effect of spaced-out TPE groups in the polymer chain on the photoluminescence of the polymer. The structures of all intermediates and final products were characterized by nuclear magnetic resonance (NMR) and size exclusion chromatography (SEC). The AIE characteristics were proven and compared using the photoluminescence graphs, showing that the homopolymer had increased emission intensity than its monomer. The copolymer had higher emission intensity than TPEMA and higher normalized emission intensity than that of the homopolymer, showing the effect of structure on the photoluminescence. Both the homopolymer and the copolymer were easier to aggregate than the monomer, making it more effective to utilize the material in applications where it needs to be emissive in diluted solutions. The glass transition temperature and the tacticity of the homopolymer and copolymer were also compared. The thesis is divided into the following five chapters; 1. Introduction, where a brief background along with the scope of the thesis is provided; 2. Literature Review, where a summary of controlled radical polymerization and AIE is given; 3. Experimental Section, where the materials' detailed procedure and characterization are provided; 4. Results and Discussion, where results of successful experiments are discussed; 5. Concluding Remarks, where the results are summarized, and future work is discussed.
28

Supramolecular Block Copolymers Via Ionic Interactions

Zhang, Longhe 16 September 2014 (has links)
No description available.
29

Copolymerizing Acrylonitrile and Methyl Acrylate by RAFT for Melt Processing Applications: A Synthetic Investigation of the Effects of Chain Transfer Agent, Initiator, Temperature, and Solvent

Beck, Susan Ashley 23 June 2014 (has links)
Statistical copolymers of acrylonitrile (AN) and methyl acrylate (MA) were successfully prepared and characterized using reversible addition-fragmentation chain transfer (RAFT) copolymerization. A typical copolymer was charged with 15 wt. % MA content. This thesis describes a systematic variation of the RAFT copolymerization variables to optimize this system. In particular, the effects of chain transfer agent, initiator, temperature, and solvent on the copolymer properties were studied. / Master of Science
30

Synthesis of Bottlebrush Polymers Using the Grafting-Through and Transfer-To Methods

Radzinski, Scott Charles 01 May 2017 (has links)
Bottlebrush polymers are interesting topologies that have become increasingly relevant in various applications including rheology modifiers, super-soft elastomers, photonic crystals, anti-fouling coatings, the in vivo delivery of therapeutic agents, and as promising substrates in lithographic printing. These macromolecules are comprised of numerous polymeric side-chains densely grafted to a polymer backbone. The densely grafted nature of bottlebrush polymers results in steric repulsion between neighboring polymer chains, forcing these macromolecules to adopt a chain-extended conformation. Although these remarkable macromolecules have a many different applications, the transformative potential of the bottlebrush polymer topology has not been realized because the synthesis of high molecular weight bottlebrush polymers is challenging. This dissertation focusses on improving the synthesis of these large macromolecules using the grafting-through strategy in the first section and the transfer-to strategy in the second section. For the first time the effect of anchor group chemistry—the configuration of atoms linking the polymer to a polymerizable norbornene—was studied on the kinetics of ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) initiated by Grubbs 3rd generation catalyst. A variance in the rate of propagation of >4-fold between similar MMs with different anchor groups was observed. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. Experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. This new insight will allow others to achieve high MM conversion and prepare pure, high MW bottlebrush polymers by ROMP grafting-through. The second section of this dissertation deals with a little studied bottlebrush synthesis technique called the transfer-to method. This method is a hybrid of the grafting-from and grafting-to approaches in which the growing polymer side chains detach from the backbone, propagate freely in solution, and then reattach to the backbone in a chain transfer step. Several parameters were investigated to determine optimal conditions for this process. This study provides for the first time a guide to use the transfer-to method to produce high purity bottlebrush polymers with controllable backbone and side chain length. / Ph. D.

Page generated in 0.0264 seconds