• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 60
  • 14
  • 11
  • 7
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 276
  • 104
  • 96
  • 94
  • 72
  • 65
  • 52
  • 51
  • 49
  • 46
  • 37
  • 32
  • 32
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Modeling of Mixing in Cross Junction using Computational Fluid Dynamics

Hammoudi, Hellen 06 August 2021 (has links)
Research has shown that mixing in cross-junctions in water distribution systems is far from perfect, and that the entering fluids bifurcate from each other rather than mix. The purpose of this thesis is to study the behaviour of two fluids entering a cross-junction in a water distribution system. In this context, experimental tests and numerical simulations are performed in order to produce and test the mixing at cross-junctions. This study focuses on cross-junctions with equal pipe diameters, with flows that can vary from laminar to turbulent. The fluids are pure water and tracer. Different tracer materials with various flow configurations were tested experimentally and numerically. Firstly, an experimental study of mixing in cross-junctions was performed at the TZW: DVGW-Technologiezentrum Wasser (German Water Center) in Dresden. This experimental study pro-vides an overview of the parameters that can affect the mixing in cross-junctions, and is used to validate the numerical simulations. Different numerical approaches for modelling the mixing in cross-junctions are presented. The simulations use an existing commercial CFD code, ANSYS CFX 19.1, and are also extensively validated using experimental and numerical results from other researchers. In ANSYS CFX there are several models that can be used to simulate the mixing of two fluids. In this study both fluids are considered to be isothermal incompressible and without phase change. Two mixing models are tested: the additional variable model and the multi-component model. The three-dimensional models use RANS turbulence models and LES simulations. The parameters of the numerical setup were investigated carefully in order to study their effect on the results. Furthermore, the effect of changing the turbulent Schmidt number in the RANS simulations was extensively studied, and the results are compared with the experimental results. The accuracy of using Large eddy simulation to simulate mixing in cross junction is also tested, taking into consideration the required mesh resolution and the turbulence in the initial bound-ary conditions. This work presents an applicable numerical approach to simulate the fluid behaviours in cross-junctions. Using this approach, the effect of different parameters is tested, such as: Reynolds number, pipe diameter, mixing time, diffusivity and density difference. The results produced using the numerical approach revealed that one of the main parameters that affect the mixing is the density difference. It has a great effect on the outgoing concentration in cross-junctions, and the mixing behaviour changes when the tracer material and the flow regime are changed. The used approach will help to investigate the effect of various flow parameters on the mixing in cross-junctions. Based on the data set of this study, an empirical conceptual model for mixing in cross-junction is also presented using multiple regression, and there is potential for this model to be further developed in combination with experimental and numerical studies.:Abstract Kurzfassung Nomenclature List of Figures List of Tables 1 Introduction and Literature Review 1.1 Introduction 1.2 Literature Review 1.2.1 Transport in water distribution system 1.2.2 Mixing in pipe junctions 1.3 Research problems 1.4 Research methodology and objectives 2 Theoretical Background 2.1 Basic equations and terms in pipe hydraulic 2.1.1 Conservation of mass (the equation of continuity) 2.1.2 Conservation of momentum (the Navier-Stokes equations) 2.1.3 Contaminant transport (transport equation) 2.1.4 Reynolds number 2.1.5 Flow development in pipes 2.1.6 Velocity distribution in pipe flows 2.1.7 Definition of concentration and mass fraction 2.1.8 Viscosity 2.2 Turbulence and modeling 2.2.1 Spatial discretization methods 2.2.2 Turbulence models 2.2.3 Direct numerical simulation (DNS) 2.2.4 Reynolds averaged Navier-Stokes Equations (RANS) 2.2.5 Large eddy simulation 2.3 Modeling of mixing in ANSYS CFX 2.3.1 Additional variable 2.3.2 Multi-component flow model 2.3.3 Two-phase flow model 2.4 Mixing in cross-junctions (available models) 2.4.1 Complete mixing model 2.4.2 Bulk advective mixing model (BAM) 2.4.3 BAM-Wrap mixing model 2.4.4 Shao mixing model 3 Experimental Study 3.1 Introduction 3.2 Description of the model network 3.3 Results and discussion 3.3.1 Turbulent flow experiments 3.3.2 Laminar flow experiments 3.3.3 The interpolation of the experimental results 3.4 Conclusion 4 3D Numerical Study using ANSYS CFX 4.1 Introduction to ANSYS CFX 4.1.1 Model setup in ANSYS CFX 4.1.2 Modeling of mixing in cross-junctions 4.2 Additional variable model 4.2.1 Application of Reynolds averaged Navier-Stokes simulation 4.2.2 Sensitivity analysis of URANS simulations 4.2.3 Application of the large eddy simulation 4.2.4 Summary 4.3 Multi-component flow model 4.3.1 Setup of the multi-component simulation model 4.3.2 Results and discussion 4.4 Summary 5 Mixing Model for Cross junction 5.1 Introduction 5.2 Parameter sensitivity Analysis 5.2.1 The influence of changing the Reynolds number 5.2.2 The influence of changing the pipe diameter 5.2.3 The influence of the inflow and outflow ratios 5.2.4 The influence of changing the tracer properties 5.2.5 The influence of the pipe roughness 5.3 Conceptual model for mixing in cross junction 6 Summary 7 Outlook References APPENDIX A APPENDIX B / Frühere Forschungsergebnisse haben gezeigt, dass das Vermischen von gelösten Substanzen in Rohrkreuzen in Wasserversorgungssystemen alles andere als perfekt ist und wenn zwei Flüssigleiten in einem Rohrkreuz eintreten, trennen sie sich eher voneinander anstatt sich zu vermischen. Das Ziel dieser Forschungsarbeit ist es, das Verhalten von zwei Flüssigkeiten in einem Rohrkreuz zu untersuchen. In diesem Zusammenhang werden experimentelle Unter-suchungen und numerische Strömungssimulationen durchgeführt, um das Vermischen an Kreuzungspunkten in Wasserversorgungssystemen zu untersuchen. Diese Arbeit konzentriert sich auf Rohrkreuzen mit gleichen Rohrdurchmessern in Strömungen, die von laminar bis turbulent variieren können. Verschiedene Eigenschaften der Flüssigkeiten mit verschiedenen Strömungskonfigurationen wurden experimentell und numerisch getestet. Zunächst wurden im TZW (DVGW-Technologiezentrum Wasser) die experimentellen Untersuchungen zum Mi-schen in Rohrkreuzungen durchgeführt. Die durchgeführten experimentellen Untersuchungen bieten einen Überblick über die Parameter, die das Mischverhältnis in Kreuzungspunkten be-einflussen können, und werden zur Validierung der numerischen Simulationen verwendet. Verschiedene numerische Ansätze zur Modellierung des Vermischens in Rohrkreuzen werden vorgestellt. Die 3D-numerische Strömungssimulationen verwenden einen vorhandenen kommerziellen CFD-Code, ANSYS CFX 19.1, und werden auch anhand experimenteller und numerischer Ergebnisse anderer Forscher umfassend validiert. In ANSYS CFX gibt es mehre-re Modelle, mit denen das Vermischen von Flüssigkeiten simuliert werden kann. In dieser Arbeit werden beide Flüssigkeiten als isotherm, inkompressibel und ohne Phasenwechsel betrachtet. Es werden zwei Mischmodelle getestet: das Additional Variable Model und das Multi-component Model. Die 3D -Strömungsmodelle verwenden RANS-Turbulenzmodelle und LES-Simulationen. Die Parameter des numerischen Aufbaus wurden sorgfältig untersucht, um ihre Auswirkung auf die Ergebnisse zu untersuchen. Darüber hinaus wurde der Einfluss der Änderung der turbulenten Schmidt-Zahl in den RANS-Simulationen ausführlich untersucht und die Ergebnisse mit den experimentellen Ergebnissen verglichen. Die Genauigkeit der Ver-wendung einer Large-Eddy-Simulation zur Simulation des Vermischens in Rohrkreuz wird ebenfalls getestet, wobei die erforderliche Netzauflösung und die Turbulenzen in den An-fangs- und Randbedingungen berücksichtigt werden. Diese Arbeit präsentiert einen anwend-baren numerischen Ansatz zur Simulation des Fließverhaltens in Rohrkreuzen. Mit diesem Ansatz wird die Wirkung verschiedener Parameter getestet, z. B.: Reynolds-Zahl, Rohrdurch-messer, Vermischungszeit, Diffusivität und Dichteunterschied. Die mit den numerischen Mo-dellen erzielten Ergebnisse zeigten, dass einer der Hauptparameter, die das Vermischen in Rohrkreuzen beeinflussen, der Dichteunterschied ist, welcher einen großen Einfluss auf die ausgehende Konzentration in Kreuzungen hat. Der verwendete numerische Ansatz wird dazu beitragen, die Auswirkung verschiedener Strömungsparameter auf das Vermischen in Rohr-kreuzen zu untersuchen. Basierend auf dem Datensatz dieser Studie wird auch ein empiri-sches konzeptionelles Modell für das Vermischen in Rohrkreuz unter Verwendung multipler Regression vorgestellt. Dieses Modell kann in Kombination mit experimentellen und numeri-schen Studien weiterentwickelt werden.:Abstract Kurzfassung Nomenclature List of Figures List of Tables 1 Introduction and Literature Review 1.1 Introduction 1.2 Literature Review 1.2.1 Transport in water distribution system 1.2.2 Mixing in pipe junctions 1.3 Research problems 1.4 Research methodology and objectives 2 Theoretical Background 2.1 Basic equations and terms in pipe hydraulic 2.1.1 Conservation of mass (the equation of continuity) 2.1.2 Conservation of momentum (the Navier-Stokes equations) 2.1.3 Contaminant transport (transport equation) 2.1.4 Reynolds number 2.1.5 Flow development in pipes 2.1.6 Velocity distribution in pipe flows 2.1.7 Definition of concentration and mass fraction 2.1.8 Viscosity 2.2 Turbulence and modeling 2.2.1 Spatial discretization methods 2.2.2 Turbulence models 2.2.3 Direct numerical simulation (DNS) 2.2.4 Reynolds averaged Navier-Stokes Equations (RANS) 2.2.5 Large eddy simulation 2.3 Modeling of mixing in ANSYS CFX 2.3.1 Additional variable 2.3.2 Multi-component flow model 2.3.3 Two-phase flow model 2.4 Mixing in cross-junctions (available models) 2.4.1 Complete mixing model 2.4.2 Bulk advective mixing model (BAM) 2.4.3 BAM-Wrap mixing model 2.4.4 Shao mixing model 3 Experimental Study 3.1 Introduction 3.2 Description of the model network 3.3 Results and discussion 3.3.1 Turbulent flow experiments 3.3.2 Laminar flow experiments 3.3.3 The interpolation of the experimental results 3.4 Conclusion 4 3D Numerical Study using ANSYS CFX 4.1 Introduction to ANSYS CFX 4.1.1 Model setup in ANSYS CFX 4.1.2 Modeling of mixing in cross-junctions 4.2 Additional variable model 4.2.1 Application of Reynolds averaged Navier-Stokes simulation 4.2.2 Sensitivity analysis of URANS simulations 4.2.3 Application of the large eddy simulation 4.2.4 Summary 4.3 Multi-component flow model 4.3.1 Setup of the multi-component simulation model 4.3.2 Results and discussion 4.4 Summary 5 Mixing Model for Cross junction 5.1 Introduction 5.2 Parameter sensitivity Analysis 5.2.1 The influence of changing the Reynolds number 5.2.2 The influence of changing the pipe diameter 5.2.3 The influence of the inflow and outflow ratios 5.2.4 The influence of changing the tracer properties 5.2.5 The influence of the pipe roughness 5.3 Conceptual model for mixing in cross junction 6 Summary 7 Outlook References APPENDIX A APPENDIX B
172

A numerical investigation into the heave, sway and roll motions of typical ship like hull sections using RANS numerical methods

Henning, H. L. 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: The hydrodynamic characteristics of three typical ship-like hull sections, in different motions, are numerically investigated using FLUENT, 2009. These simple shapes, namely a v-bottom (triangle) hull, a at-bottom (square) hull and a round-bottom (semi-circle) hull, are investigated in uncoupled heave, sway and roll. The problem is described in two dimensions. A combination of numerical methods and models, found in literature, are used to conduct this investigation. Hull characterisation is achieved through the use of hull mass and damping coe cients. These numerically determined coe cients are compared to experimental work conducted by Vugts (1968). A good correlation between the numerical and experimental results exists for the heave and sway cases. By normalising the coe cients, different hulls are comparable to one another. The numerical models used are validated and veri ed. Roll motion remains largely unsolved for very large angles of roll (in excess of 11°). Different uid ow phenomena occurring around the hull sections have varying degrees of in uence on the motions of a hull. It is found that not one of the turbulence models investigated can be employed to globally solve each type of hull-motion case. Also, forced oscillations in computational simulations require considerably more computational time than free-decay oscillating hull simulations. / AFRIKAANSE OPSOMMING: Die hidrodinamiese karakteristieke van verskillende skeepsrompvorms, in verskeie bewegingswieë, is numeries ondersoek met behulp van FLUENT, 2009. Drie eenvoudige vorms ('n v-bodem (driehoek), plat-bodem (reghoek) en rondebodem (semi-sirkel) romp) is onderskeidelik ondersoek in opwieg, dwarswieg en rol. Die probleem is twee-dimensioneel. Daar is gebruik gemaak van 'n kombinasie van numeriese metodes en modelle, uit die literatuur, om die ondersoek uit te voer. Die rompe is gekarakteriseer met behulp van massa- en dempingskoëffi siënte. Hierdie numeries bepaalde koë ffisiënte is vergelyk met die eksperimentele werk van Vugts (1968). Daar bestaan 'n goeie korrelasie tussen die numeriese en eksperimentele resultate vir die opwieg en dwarswieg gevalle. Die koë ffisiënte is genormaliseer om die verskeie rompvorms te vergelyk. Die numeriese modelle is geverifi eer en valideer. Rolbewegings is onopgelos vir groot rolhoeke (groter as 11°). Die mate waartoe die romp se beweging beïnvloed word deur die verskillende vloei verskynsels wat om die rompe ontstaan, verskil. Daar is bevind dat geen van die turbulensie modelle gebruik kan word om alle skeepsbeweging-gevalle op te los nie. Gedwonge-ossilasie numeriese simulasies benodig meer berekeningstyd as vrye-verval ossilasie gevalle.
173

Development of combustion models for RANS and LES applications in SI engines

Ranasinghe, Chathura P. January 2013 (has links)
Prediction of flow and combustion in IC engines remains a challenging task. Traditional Reynolds Averaged Navier Stokes (RANS) methods and emerging Large Eddy Simulation (LES) techniques are being used as reliable mathematical tools for such predictions. However, RANS models have to be further refined to make them more predictive by eliminating or reducing the requirement for application based fine tuning. LES holds a great potential for more accurate predictions in engine related unsteady combustion and associated cycle-tocycle variations. Accordingly, in the present work, new advanced CFD based flow models were developed and validated for RANS and LES modelling of turbulent premixed combustion in SI engines. In the research undertaken for RANS modelling, theoretical and experimental based modifications have been investigated, such that the Bray-Moss-Libby (BML) model can be applied to wall-bounded combustion modelling, eliminating its inherent wall flame acceleration problem. Estimation of integral length scale of turbulence has been made dynamic providing allowances for spatial inhomogeneity of turbulence. A new dynamic formulation has been proposed to evaluate the mean flame wrinkling scale based on the Kolmogorov Pertovsky Piskunow (KPP) analysis and fractal geometry. In addition, a novel empirical correlation to quantify the quenching rates in the influenced zone of the quenching region near solid boundaries has been derived based on experimentally estimated flame image data. Moreover, to model the spark ignition and early stage of flame kernel formation, an improved version of the Discrete Particle Ignition Kernel (DPIK) model was developed, accounting for local bulk flow convection effects. These models were first verified against published benchmark test cases. Subsequently, full cycle combustion in a Ricardo E6 engine for different operating conditions was simulated. An experimental programme was conducted to obtain engine data and operating conditions of the Ricardo E6 engine and the formulated model was validated using the obtained experimental data. Results show that, the present improvements have been successful in eliminating the wall flame acceleration problem, while accurately predicting the in-cylinder pressure rise and flame propagation characteristics throughout the combustion period. In the LES work carried out in this research, the KIVA-4 RANS code was modified to incorporate the LES capability. Various turbulence models were implemented and validated in engine applications. The flame surface density approach was implemented to model the combustion process. A new ignition and flame kernel formation model was also developed to simulate the early stage of flame propagation in the context of LES. A dynamic procedure was formulated, where all model coefficients were locally evaluated using the resolved and test filtered flow properties during the fully turbulent phase of combustion. A test filtering technique was adopted to use in wall bounded systems. The developed methodology was then applied to simulate the combustion and associated unsteady effects in Ricardo E6 spark ignition engine at different operating conditions. Results show that, present LES model has been able to resolve the evolution of a large number of in-cylinder flow structures, which are more influential for engine performance. Predicted heat release rates, flame propagation characteristics, in-cylinder pressure rise and their cyclic variations are also in good agreement with measurements.
174

Challenges of Implementing an iNET Transceiver for the Radio Access Network Standard (RANS)

Geoghegan, Mark 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada
175

Développement et validation expérimentale d'une approche numérique pour la simulation de l'aérodynamique et de la thermique d'un véhicule à trois roues

Thiam, Mor Tallla January 2016 (has links)
La compréhension de l'aérothermique d'un véhicule durant sa phase de développement est une question essentielle afin d'assurer, d'une part, un bon refroidissement et une bonne efficacité de ses composants et d'autre part de réduire la force de traînée et évidement le rejet des gaz à effet de serre ou la consommation d'essence. Cette thèse porte sur la simulation numérique et la validation expérimentale de l'aérothermique d'un véhicule à trois roues dont deux, en avant et une roue motrice en arrière. La simulation numérique est basée sur la résolution des équations de conservation de la masse, de la quantité de mouvement et de l'énergie en utilisant l'approche RANS (Reynolds-Averaged Navier-Stokes). Le rayonnement thermique est modélisé grâce à la méthode S2S (Surface to Surface) qui suppose que le milieu séparant les deux surfaces rayonnantes, ici de l'air, ne participe pas au processus du rayonnement. Les radiateurs sont considérés comme des milieux poreux orthotropes où la perte de pression est calculée en fonction de leurs propriétés inertielle et visqueuse; leur dissipation thermique est modélisée par la méthode Dual flow. Une première validation de l'aérodynamique est faite grâce à des essais en soufflerie. Ensuite, une deuxième validation de la thermique est faite grâce à des essais routiers. Un deuxième objectif de la thèse est consacré à la simulation numérique de l'aérodynamique en régime transitoire du véhicule. La simulation est faite à l'aide de l'approche Detached eddy simulation (DES). Une validation expérimentale est faite à partir d'étude en soufflerie grâce à des mesures locales de vitesse à l'aide de sondes cobra.
176

Hydrodynamic analysis of inland vessel self-propulsion for cargo transport for navigability in the Magdalena River. / Análise hidrodinâmico da barcaça auto propelida para o transporte de carga para a navegabilidade no Rio Magdalena.

Acosta Lopera, Oscar David Acosta 27 May 2019 (has links)
The subject of this study is the determination of the resistance of an inland vessel engaged in cargo transport in the lower course of the Magdalena River, considering that the hydrodynamic effects in shallow water navigation are very different compared to the effects in deep water navigation. The hydrodynamic analysis is realized numerically using Computational Fluid Dynamics (CFD). The Reynolds-Averaging Navier-Stokes equation (RANS) solver is applied to simulate viscous and pressure effects around a tank and a hull in confined tank considering the wall bottom and side effects in shallow water navigation. For turbulence effects, realizable k-? model is used. The motion of the vessel causes elevations of the free surface, in which, is captured using the Volume of Fluid method (VOF). For discretization of flow domain, the Finite Volume Method (FVM) is applied. The motion of the fluids is updated for each time step that allows the calculation of the resistance acting on the hull. The numerical simulation results are compared with experimental data obtained by the Technological Research Institute of the State of São Paulo (IPT, acronym in Portuguese) together with the existing empirical methods for this type of cases. / É apresentado um estudo para determinar a resistência de uma barcaça empregada no transporte de carga que poderia operar no setor baixo do rio Magdalena. Os efeitos hidrodinâmicos de um navio em águas rasas são muito diferentes, comparados a esses efeitos em águas com profundidade infinita. A análise hidrodinâmica é realizada numericamente usando a Dinâmica dos Fluidos Computacional (CFD, acrônimo em inglês). A solução das equações de Navier-Stokes (NS) junto com a decomposição do Reynolds (RANS, acrônimo em inglês) é aplicada para simular os efeitos viscosos e de pressão em torno de um tanque e de uma embarcação em um tanque confinado que é caracterizado pelos efeitos do fundo e das paredes. Para efeitos de turbulência, o modelo realizado k-? é usado. O movimento da embarcação do rio provoca elevações da superfície livre que são capturadas usando o método do Volume de Fluido (VOF, acrônimo em inglês). Para a discretização do domínio de fluxo, o Método dos Volumes Finitos (FVM, acrônimo em inglês) é utilizado. O movimento dos fluidos é atualizado para cada intervalo de tempo o que permite o cálculo da resistência atuando no casco. Os resultados da simulação numérica são comparados com dados experimentais obtidos pelo Instituto de Pesquisas Tecnológicas do Estado de São Paulo (IPT), juntamente com os métodos empíricos existentes para esse tipo de casos.
177

Multidisciplinary optimization of aircraft propeller blades / Optimisation multidisciplinaire de pales d'hélice d'avion

Marinus, Benoît 08 November 2011 (has links)
Les hélices sont connues pour leur avantage significatif en termes de rendement propulsif. Ces avantages se traduisent directement par une réduction de la consommation de carburant de sorte qu’elles connaissent aujourd’hui un regain d’intérêt. Actuellement, les avancées récentes en simulations numériques rendent possible d’appliquer l’optimisation multidisciplinaire au cas exigeant du design de pales d’hélice transsonique. Pour ces raisons, une méthode d’optimisation est développée, dans laquelle les objectifs de performance aérodynamique, aéroacoustique et aéroélastique sont en concurrence. Cette méthode est appliquée au design de pales d’hélice à haute vitesse et à simple rotation. L’optimisation s’appuie sur l’Evolution Différentielle Multi-Objectifs (Multi-Objective Differential Evolution - MODE). Cette technique est une des formes d’algorithme évolutionnaire qui mimique l’évolution naturelle des populations par le concours de la sélection, de la recombinaison et de l’éventuelle mutation de formes de pales, chacune d’elles étant représentée par un vecteur de variables (corde, angle de flèche, etc. . .). MODE offre l’avantage de considérer tous les objectifs en concurrence lors de la sélection des designs prometteurs au sein d’une population. Afin de garder le coût computationnel dans des limites acceptables, l’évaluation des performances des designs proposés est faite par une approche à deux niveaux. Un meta-modèle fournit les estimations de performance pour chaque design à un coût computationnel extrêmement faible alors que des codes d’analyse à haute fidélité calculent les performances précises à un coût nettement plus élevé. Pour préserver la précision des estimations, le meta-modèle est initialement entraîné sur une population composée à cet effet. L’entraînement est ensuite répété de temps à autres avec les performances haute fidélité de designs prometteurs. Différents outils à haute fidélité ont été développés et utilisés dans ce cadre. L’outil CFD exécute la simulation RANS stationnaire d’un seul passage d’entrepales pour une hélice isolée sans angle d’attaque dans un écoulement libre. Ces simulations délivrent les valeurs de performance aérodynamique. L’hélice complète est modélisée grâce à des conditions aux limites cycliques. Le modèle de turbulence k - ε est utilisé en combinaison avec un traitement adapté près des murs. Des conditions adiabatiques et sans glissement sont imposées sur le carénage et la surface de la pale tandis que la limite radiale de la section d’essais reproduit les effets d’un champ de pression lointain. Cette approche a prouvé sa robustesse et, par-dessus tout, sa précision puisque une correspondance acceptable avec des résultats expérimentaux est obtenue pour différentes conditions d’utilisation et un large éventail de formes de pales. De plus, l’indépendance par rapport au maillage est satisfaisante. Lors de l’analyse a posteriori des résultats aérodynamiques, le Sound Pressure Level (SPL) est calculé par l’outil aéroacoustique (CHA) pour le bruit tonal en différentes positions. La formulation 1A de Farassat est utilisée à cette fin. Cette formulation découle de l’équation non-homogène d’onde dérivée de l’analogie acoustique de Lighthill par Ffowcs Williams et Hawkings (FW-H). Elle bénéficie du découplage partiel des aspects aérodynamiques et aéroacoustiques en plus d’être particulièrement adaptée pour le calcul du bruit d’hélice. Le bruit d’épaisseur et le bruit de charge sont exprimés par des termes séparés dans le domaine temporel tandis que les quadripôles de l’équation de FW-H sont négligés. La surface de la pale est utilisée comme surface d’intégration et une nouvelle technique de troncation a été développée et appliquée pour circonvenir la singularité mathématique qui apparaît lorsque des parties de la pale ont des conditions soniques en termes de cinématique par rapport à l’observateur. Cette approche délivre des résultats fiables à un coût acceptable. [...] / Open rotors are known to have significant advantages in terms of propulsive efficiency. These advantages translate directly in reduced fuel burn so that they nowadays benefit from a surge of interest. At the same time, recent advances in numerical simulations make the application of multidisciplinary optimization for the demanding design of transonic propeller blades, an affordable option. Therefore, an optimization method in which the performance objectives of aerodynamics, aeroacoustics and aeroelasticity compete against each other, is developed and applied for the design of high-speed single-rotation propellers. The optimization is based on Multi-Objective Differential Evolution (MODE).This technique is a particular kind of evolutionary algorithm that mimics the natural evolution of populations by relying on the selection, recombination and eventually mutation of blade designs, each of them being represented by a vector of design variables (e.g. chord width, tip sweep, etc). MODE has the advantage of dealing concurrently with all the objectives in the selection of potentially promising designs among a population. In order to keep the computational cost within reasonable margins, the assessment of the performance of proposed designs is done in a two-level approach. A metamodel provides performance estimates for each proposed design at extremely low computational effort while high-fidelity analysis codes provide accurate performance values on some promising designs at much higher cost. To safeguard the accuracy of the estimates, the metamodel is initially trained on a population that is specifically assembled for that purpose. The training is repeated from time to time with the high-fidelity performance values of promising designs. Different high-fidelity tools have been developed and used for the assessment of performance.The CFD-tool performs steady RANS simulations of a single blade passage of the isolated propeller in free air under zero angle of attack. These simulations provide the aerodynamic performance values. The full propeller is modelled thanks to cyclic boundary conditions. The k - ε turbulence model is used in combination with wall treatment. Adiabatic no-slip wall conditions are imposed on the spinner and blade surfaces whereas the test-section radial boundary is reproducing the effects of a pressure far-field. This approach has proven its robustness and, above all, its accuracy as satisfactory agreement with experimental results has been found for different operating conditions over a wide range of blade shapes, as well as sufficient grid independency. In the post-processing of the aerodynamic results, the Sound Pressure Level (SPL)is computed for tonal noise at various observer locations by the aeroacoustic solver(CHA). Formulation 1A from Farassat is used for this purpose. This formulation is related to the inhomogeneous wave equation derived from Lighthill’s acoustic analogy by Ffowcs Williams and Hawkings (FW-H). It benefits from the partial decoupling of the acoustic and aerodynamic aspects and is particularly suited to compute the noise from propellers. The thickness noise and loading noise are expressed by separate equations in the time-domain whereas the quadrupole source term is dropped from the original FW-H equation. The blade surface is chosen as integration surface and a newly developed truncation technique is applied to circumvent the mathematical singularity arising when parts of the blade reach sonic conditions in terms of kinematics with respect to the observer. This approach delivers accurate values at acceptable computational cost. Besides, CSM-computations make use of a finite elements solver to compute the total mass of the blade as well as the stresses resulting from the centrifugal and aerodynamic forces. Considering the numerous possibilities to tailor the blade structure so that it properly takes on the stresses, only a simplified blade model is implemented. [...]
178

Estudo numérico de chamas turbulentas não pré-misturadas através de modelos baseados no conceito de flamelets

Deon, Diego Luis January 2016 (has links)
A simulação numérica de chamas turbulentas é ainda hoje um desafio para as práticas de mecânica dos fluidos computacional. Compreendendo que as abordagens numéricas mais completas e realísticas atualmente disponíveis podem ser computacionalmente proibitivas, diversos modelos vêm sendo desenvolvidos com o objetivo de reproduzir os fenômenos envolvidos na combustão de uma forma simplificada, mas ainda fisicamente consistente. Este trabalho é, portanto, dedicado à comparação de diferentes modelos de fechamento para a turbulência baseados nas equações de Navier-Stokes em médias de Reynolds e de modelos para simplificação da cinética química baseados no conceito de flamelets, com e sem a modelagem da radiação térmica, esta última através do modelo de soma-ponderada-de-gasescinzas. Para tanto, na primeira parte do presente trabalho são comparados seis modelos de turbulência na solução de um jato turbulento de propano, não reativo e isotérmico, circundado por uma corrente paralela de ar, quanto a sua eficiência na predição dos valores médios da velocidade longitudinal e transversal, fração mássica de propano e massa específica da mistura. Os modelos são o k- Padrão (empregado na sua versão original e com mais duas modificações nas suas constantes conforme propostas encontradas na literatura), o k- Realizable, o k- Padrão e o k- Shear-Stress Transport. Um dos modelos de melhor desempenho é então usado na simulação de uma chama turbulenta não pré-misturada de metano/hidrogênio/nitrogênio circundada por um escoamento coaxial de ar de baixa velocidade, no qual são então comparados os modelos para redução da cinética química baseados no conceito de flamelets, o Steady Laminar Diffusion Flamelet (SLDF) e o Flamelet-Generated Manifold (FGM), tendo os seus resultados comparados aos dados experimentais para os valores médios da velocidade longitudinal, fração de mistura, temperatura e frações mássicas das espécies químicas. Dentre os modelos de turbulência avaliados, é observado que as duas versões ajustadas do k- Padrão e o k- Padrão se mostraram com melhor concordância em relação às medições experimentais do que os demais. No presente estudo é também avaliada a consistência dos dados experimentais reportados e uma discrepância é identificada neste jato, mas que, conforme verificado, não compromete a comparação dos modelos aqui proposta. Na solução do escoamento reativo, o modelo SLDF se mostrou com resultados bastante próximos aos resultados experimentais (exceto para o NO), sendo aprimorados ainda mais com a inclusão da modelagem da radiação térmica, sobretudo para regiões mais distantes do bico injetor do combustível, após o pico de temperatura da chama. O modelo FGM, contudo, apresentou resultados muito aquém dos esperados, sobretudo para as frações mássicas das espécies químicas, mesmo utilizando malhas com nível de refinamento muito maior e com o teste de diversas combinações de espécies para a variável de progresso da reação, e no qual a inclusão da radiação na modelagem também não trouxe benefícios perceptíveis. Todas as simulações numéricas foram realizadas empregando o código comercial ANSYS Fluent, versão 15.0.0. / The numerical simulation of turbulent flames is still a challenge for today's computational fluid dynamics practices. Understanding that the most complete and realistic numerical approaches available today may be computationally prohibitive, several models have been developed in order to reproduce the phenomena involved in combustion in a simplified, but still physically consistent, way. Therefore, this work is dedicated to compare different models for turbulence closure based on the Reynolds-averaged Navier-Stokes equations and models for simplification of the chemical kinetics based on the flamelet concept, with and without thermal radiation modeling through the weighted-sum-of-gray-gases model. Thus, in the first part of the current work six turbulence models are employed to solve a turbulent nonreactive isothermal flow, a propane jet surrounded by a parallel stream of air. The models are compared through their effectiveness in predicting the mean values of longitudinal and transversal velocities, propane mass fraction and mixture density. The models are the Standard k- (employed in its original version and with two modifications according to proposals found in the literature), the Realizable k- , the Standard k- and the Shear-Stress Transport k- . One of the best performing models is then used to simulate a turbulent nonpremixed flame of methane/hydrogen/nitrogen surrounded by a low-velocity air coflow, in which are compared the models to reduce the chemical kinetics based on the flamelets concept, the Steady Laminar Diffusion Flamelet (SLDF) and the Flamelet-Generated Manifold (FGM), being the numerical results compared to the experimental data for the mean values of longitudinal velocity, mixture fraction, temperature and species mass fractions. Among the six turbulence models evaluated, it is observed that the two adjusted versions of the Standard k- and the Standard k- showed better agreement with the experimental measurements than the other models. In the current study it is also evaluated the consistency of the reported experimental data and a discrepancy is identified, which, as verified, does not compromise the models comparison here proposed. In the solution of the reactive flow, the SLDF model showed results very close to the experimental results (except for NO), being further enhanced with the inclusion of the thermal radiation modeling, especially for regions far from fuel nozzle, after the peak of temperature of the flame. The FGM model, however, showed results far below the expected, especially for the mass fractions of chemical species, even using meshes with much higher refinement level and testing of various species combinations for the reaction progress variable. The inclusion of the radiation modeling did not brought noticeable benefits. All the numerical simulations were performed employing the ANSYS Fluent version 15.0.0 commercial code.
179

A numerical and experimental investigation of autoignition

Gordon, Robert Lindsay January 2008 (has links)
Doctor of Philosophy(PhD) / This body of research uses numerical and experimental investigative techniques to further the understanding of autoignition. Hydrogen/nitrogen and methane/air fuel configurations of turbulent lifted flames in a vitiated coflow burner are used as model flames for this investigation. Characterisation was undertaken to understand the impact of controlling parameters and the overall behaviour of the flames, and to provide a body of data for modelling comparisons. Modelling of the flames was conducted using the PDF-RANS technique with detailed chemistry incorporated using In-situ Adaptive Tabulation (ISAT) within the commercial CFD package, FLUENT 6.2. From these investigations, two numerical indicators for autoignition were developed: convection-reaction balance in the species transport budget at the mean flame base; and the build-up of ignition precursors prior to key ignition species. These indicators were tested in well defined autoignition and premixed flame cases, and subsequently used with the calculated turbulent lifted flames to identify if these are stabilised through autoignition. Based on learnings from the modelling, a quantitative, high-resolution simultaneous imaging experiment was designed to investigate the correlations of an ignition precursor (formaldehyde: CH2O) with a key flame radical (OH) and temperature. Rayleigh scattering was used to measure temperature, while Laser Induced Fluorescence (LIF) was used to measure OH and CH2O concentrations. The high resolution in the Rayleigh imaging permitted the extraction of temperature gradient data, and the product of the OH and CH2O images was shown to be a valid and useful proxy for peak heat release rate in autoigniting and transient flames. The experimental data confirmed the presence of formaldehyde as a precursor for autoignition in methane flames and led to the identification of other indicators. Sequenced images of CH2O, OH and temperature show clearly that formaldehyde exists before OH and peaks when autoignition occurs, as confirmed by images of heat release. The CH2O peaks decrease later while those of OH remain almost unchanged in the reaction zone.
180

Simulation d'un écoulement de jet de rive par une méthode VOF

Mauriet, Sylvain 02 July 2009 (has links) (PDF)
Les processus dynamiques présents en zone de swash ont un impact significatif sur l'évolution des zones côtières. Une part importante du transport sédimentaire cross-shore se produit dans cette zone, plus particulièrement dans cette zone où se produisent le run-up et le run-down. La zone située au-delà de la ligne de rivage au repos est le plus souvent décrite par des modèles intégrés sur la verticale. La décroissance des vagues est bien reproduite, cependant l'étude du transport sédimentaire impose une paramétrisation du frottement sur le fond. Nous présentons les résultats de simulations RANS de la propagation d'un mascaret (obtenu par un "lâcher de barrage") sur une plage en pente et le run-up et le run-down ainsi générés. Les résultats numériques sont comparés aux résultats expérimentaux de Yeh et al. (1989). Les simulations ont été réalisées avec le code Navier-Stokes diphasique AQUILON. Deux méthodes de suivi d'interface VOF (VOF TVD ET VOF PLIC) sont implémentées. La viscosité turbulente est calculée par un modèle V2-F (Durbin, 1991). Une estimation des grandeurs turbulentes k et epsilon basée sur la théorie des ondes longues pour la propagation d'un ressaut hydraulique est présentée. Une modélisation VOF-PLIC & V2-F est appliquée pour reproduire les caractéristiques macroscopiques du lâcher de barrage, qui comme on pouvait s'y attendre dépendent peu de la turbulence. Nous étudions aussi l'impact des conditions initiales sur k et epsilon sur l'établissement de l'écoulement turbulent. Après ces validations vis-à-vis de la turbulence, des simulations du cas décrit par Yeh et al. (1989) sont menées pour optimiser le choix des paramètres de calcul. La théorie de Whitham (1958), prédit un effondrement du mascaret au niveau de la ligne de rivage au repos. La théorie de Shen and Meyer (1963) est toujours à l'heure actuelle le modèle de référence. Les résultats expérimentaux de Yeh et al. (1989) montrent clairement un phénomène différent. L'utilisation conjointe de la technique VOF-TVD et du modèle de turbulence V2-F semble apporter les meilleurs résultats par rapport aux expériences de Yeh et al. (1989). Une étude de la transition mascaret/lame de swash est proposée. Nos résultats montrent que la théorie de Whitham décrit de façon assez précise le mécanisme de d'effondrement du mascaret. Les résultats de nos simulations sont utilisés pour décrire la transition entre l'effondrement du mascaret et l'écoulement du run-up. L'analyse des processus de frottement dans le jet de rive met en évidence une forte dissymétrie entre le run-up et le run-down avec cisaillement plus faible lors du run-down

Page generated in 0.0448 seconds