1 |
Radial Basis Functions Applied to Integral Interpolation, Piecewise Surface Reconstruction and Animation ControlLangton, Michael Keith January 2009 (has links)
This thesis describes theory and algorithms for use with Radial Basis Functions (RBFs), emphasising techniques motivated by three particular application areas.
In Part I, we apply RBFs to the problem of interpolating to integral data. While the potential of using RBFs for this purpose has been established in an abstract theoretical context, their use has been lacking an easy to check sufficient condition for finding appropriate parent basic functions, and explicit methods for deriving integral basic functions from them. We present both these components here, as well as explicit formulations for line segments in two dimensions and balls in three and five dimensions. We also apply these results to real-world track data.
In Part II, we apply Hermite and pointwise RBFs to the problem of surface reconstruction. RBFs are used for this purpose by representing the surface implicitly as the zero level set of a function in 3D space. We develop a multilevel piecewise technique based on scattered spherical subdomains, which requires the creation of algorithms for constructing sphere coverings with desirable properties and for blending smoothly between levels. The surface reconstruction method we develop scales very well to large datasets and is very amenable to parallelisation, while retaining global-approximation-like features such as hole filling. Our serial implementation can build an implicit surface representation which interpolates at over 42 million points in around 45 minutes.
In Part III, we apply RBFs to the problem of animation control in the area of motion synthesis---controlling an animated character whose motion is entirely the result of simulated physics. While the simulation is quite well understood, controlling the character by means of forces produced by virtual actuators or muscles remains a very difficult challenge. Here, we investigate the possibility of speeding up the optimisation process underlying most animation control methods by approximating the physics simulator with RBFs.
|
2 |
Performance Comparison of AI Algorithms : Anytime Algorithms / Utförande Jämförelse av AI Algoritmer : Anytime AlgoritmerButt, Rehman January 2008 (has links)
Commercial computer gaming is a large growing industry that already has its major contributions in the entertainment industry of the world. One of the most important among different types of computer games are Real Time Strategy (RTS) based games. RTS games are considered being the major research subject for Artificial Intelligence (AI). But still the performance of AI in these games is poor by human standards due to some fundamental AI problems those require more research to be better solved for the RTS games. There also exist some AI algorithms those can help us solve these AI problems. Anytime- Algorithms (AA) are algorithms those can optimize their memory and time resources and are considered best for the RTS games. We believe that by making AI algorithms anytime we can optimize their behavior to better solve the AI problems. Although many anytime algorithms are available to solve various kinds of AI problems, but according to our research no such study is been done to compare the performances of different anytime algorithms for an AI problem in RTS games. This study will take care of that by building our own research platform specifically design for comparing performances of our selected anytime algorithms for an AI problem. / Address: NaN Mob. +46 - 737 - 40 19 17
|
3 |
Performance Comparison of AI Algorithms : Anytime Algorithms / Utförande Jämförelse av AI Algoritmer : Anytime AlgoritmerButt, Rehman January 2008 (has links)
Commercial computer gaming is a large growing industry, that already has its major contributions in the entertainment industry of the world. One of the most important among different types of computer games are Real Time Strategy (RTS) based games. RTS games are considered being the major research subject for Artificial Intelligence (AI). But still the performance of AI in these games is poor by human standards because of some broad sets of problems. Some of these problems have been solved with the advent of an open real time research platform, named as ORTS. However there still exist some fundamental AI problems that require more research to be better solved for the RTS games. There also exist some AI algorithms that can help us solve these AI problems. Anytime- Algorithms (AA) are algorithms those can optimize their memory and time resources and are considered best for the RTS games. We believe that by making AI algorithms anytime we can optimize their behavior to better solve the AI problems for the RTS games. Although many anytime algorithms are available to solve various kinds of AI problems, but according to our research no such study is been done to compare the performances of different anytime algorithms for each AI problem in RTS games. This study will take care of that by building our own research platform specifically design for comparing performances of selected anytime algorithms for an AI problem
|
Page generated in 0.0275 seconds