1 |
UHPFRC Strengthening of Reinforced Concrete Flexural Members Subjected to Static and Blast LoadsLi, Chuanjing 01 May 2023 (has links)
Ultra-high performance fiber-reinforced concrete (UHPFRC) is an advanced cement-based composite with enhanced compressive strength, tensile resistance and toughness when compared to conventional concrete. Interest in the application of UHPFRC as a retrofit material has been rapidly increasing, and a few existing studies have examined the ability of UHPFRC to retrofit and strengthen existing reinforced concrete (RC) structures under static loading; however, very limited studies have examined the effectiveness of UHPFRC to improve the response of RC members under blast loading. This thesis aims at filing this research gap and investigates the behavior of UHPFRC retrofitted RC flexural members under both static and blast loads. A total of twenty-one (21) specimens, in two different series are tested. Series 1 includes nine (9) singly-reinforced beams built with high-strength concrete (HSC) and strengthened by UHPFRC to improve shear and flexural behaviour. Series 2 includes a further twelve (12) doubly-reinforced beams/columns built with normal-strength concrete (NSC), and strengthened by UHPFRC to improve response under blast, or combined blast-axial loading. Various test parameters are examined including the effects of varying retrofit types (full jacket, U-jacket or T-sided), surface roughening methods, longitudinal steel reinforcement ratio, single vs. repeated blasts, and the effects of axial loading.
The results from this thesis are presented in six journal articles. Papers 1 and 2 study the effects of UHPFRC jacketing on the static and blast behaviour of the singly-reinforced HSC beams in Series 1, while Paper 3 discusses the effects of additional parameters such as: the effect of retrofit type, roughening method and steel detailing on blast behaviour. Under static loading (Paper 1), the UHPFRC jacketing was found to be effective in increasing shear resistance (by preventing shear failure), and improving flexural behaviour (by increasing strength, stiffness, ductility and overall toughness) when compared to control beams built without UHPFRC. Similarly, under blast loads (Paper 2) the use of UHPFRC jacketing prevented shear failure, and improved flexural behaviour by reducing displacements at equivalent blasts, increasing overall blast capacity, and improving damage tolerance. On the other hand, the results show that UHPFRC-retrofitted beams with low longitudinal steel ratios may be vulnerable to brittle bar fracture failures. As part of the numerical research, finite element (FE) modelling is used to predict the static and blast behaviour of the test beams using software LS-DYNA (Papers 1 and 2). The results from Paper 3, provide further insights into the effects of retrofit type (FJ, UJ and T) and roughening method on blast performance; both the UJ and FJ retrofits were found to be effective in increasing shear resistance, reducing blast-displacements and increasing blast capacity, while the benefit of the T-sided retrofit was limited by the crushing capacity of HSC concrete. The effect of roughening method was found to be negligible, except at the very late stages of blast loading.
Papers 4, 5 and 6 present the experimental results from the doubly-reinforced NSC beams tested in Series 2, with a focus on the effect of UHPFRC jacketing, UHPFRC retrofitting type and Axial loading, respectively. Paper 4 shows that the UHPFRC jacketing increased the stiffness and strength of the beams under both static and blast loading, however the high bond capacity of the UHPFRC and relatively low tension steel ratio increased the vulnerability of bar rupture failure. The numerical parametric study investigates the effects of steel ratio and blast load scenario, jacket thickness and interface location on blast performance and failure model. Paper 5 confirms that the blast performance of the beams is influenced by the retrofit type, with optimal performance obtained when using full- or U-jacketing. The efficient use of localized "hinge" retrofits was also found to be effective, and reduced the vulnerability to bar rupture. The numerical parametric study investigates the effects of steel ratio and blast load scenario (single vs. repeated) on the blast performance of the beams. Paper 6, studies the effect of UHPFRC jacketing in columns tested under combined axial and blast loading. The retrofit is shown to increase blast capacity and reduce blast-induced displacements and damage, though the final failure of the columns was governed by bar rupture. As part of the numerical parametric study the effects of axial load ratio, boundary conditions, steel ratio, jacket thickness and jacket design are studied numerically and found to have significant effects on blast behaviour and failure mode.
|
2 |
Analiza parametara za procenu seizmičkog odgovora višespratnih armiranobetonskih okvira / ANALYSIS OF PARAMETERS FOR SEISMIC RESPONSE ASSESSMENT OF MULTY-STOREY REINFORCED CONCRETE FRAMESRadujković Aleksandra 04 December 2015 (has links)
<p>U radu su analizirani uticaji parametara: klase dukktilnosti,<br />projektnog seizmičkog dejstva i spratnosti na seizmički odgovor AB<br />okvira projektovanih prema evropskim normama EN 1992 - 1 i EN 1998 -<br />1.Odgovor konstrukcije, dobijen primenom nelinearnih statičkih i<br />dinamičkim metoda, je razmatran na globalnom, spratnom i lokalnom<br />nivou. Procena stanja je sprovedena pre svega direktnim poređenjem<br />zahteva rotacije tetiva stubova i greda okvira sa kapacitetom za dva<br />granična stanja prema EN 1998 - 3. Pored toga, upoređeni su zahtevi sa<br />kapacitetom u pogledu duktilnosti krivina kritičnih poprečnih<br />preseka i zahtevi odnosa međuspratnog pomeranja i spratne visine sa<br />tipičnim vrednostima za očekivani nivo oštećenja konstrukcije.</p> / <p>The paper analyzed influence of parameters: ductility class, design seismic<br />actions and the number of story on seismic response of RC frames designed<br />according to EN 1992-1 and EN 1998-1. Seismic response, obtained using<br />nonlinear static and dinamic methods, at global, storey and local levels was<br />discussed. Assessment was carried out primarly by direct comparison chord<br />rotation RC frames columns and beams demands with a capacity of two limit<br />states according to EN 1998-3. In addition, curvature ductility critical regions<br />demands and capacitiy and inter storey drift demands and tipical values for<br />expected level of structural damage, were compared.</p>
|
3 |
Modélisations simplifiées pour l’analyse du risque sismique de bâtiments en béton armé / Simplified models for the analysis of seismic risk of reinforced concrete buildingsHasnaoui, Fadhila 23 June 2014 (has links)
Modélisations simplifiées pour l’analyse du risque sismique de bâtiments en béton armé. Résumé de la thèse en français (1800 signes max.) : La thèse s’inscrit dans le cadre du projet MARS (Méthodes Avancées pour le Risque Sismique, EDF R&D). Elle concerne plus particulièrement certaines tâches sur le développement des méthodes simplifiées et robustes de calcul pour permettre la simulation intensive et table de la réponse sismique de bâtiments en béton armé. En effet, |’analyse de risque nécessite un très grand nombre de calculs pour tenir compte des incertitudes, tant sur le chargement (aléa sismique) que sur le comportement non linéaire des structures. Dans la première partie de ce travail, nous effectuerons une étude bibliographique sur les modèles de résolution sismique pour les bâtiments en béton armé. Cette étape va nous permettre de rassembler le maximum d’éléments nécessaires permettant de comprendre et d’identifier tous les paramètres, les avantages, les inconvénients et la limite d’utilisation de chaque procédure de calcul numérique par éléments finis. Dans la deuxième partie, on développe un macro-élément de poteau-poutre, associé â un modèle de comportement non linéaire afin de traduire la réponse de la structure sous les sollicitations sismiques. Des hypothèses cinématiques ont été adoptées pour limiter le nombre de degrés de liberté. La loi de comportement globale en cisaillement est décrite dans le cadre delà plasticité. Nous avons choisi un modèle à écrouissage cinématique pour prendre en compte la dissipation due à la fissuration. Les paramètres sont identifiés à partir de résultats expérimentaux ou bien pré-calculés par des analyses â une échelle locale (calculs 3D par éléments finis ou calcul simplifié type « Modified Compression Field Theory >>). Des analyses numériques ont été réalisées afin de valider le modèle proposé comparant à des essais expérimentaux disponibles dans la littérature. / This PhD is part of the MARS project (Advanced Methods for Seismic Risk, EDF R&D). It relates particularity to the development of simplified and robust calculation. The overall aim is to significantly reduce the intensive computation time without loosing a reliable simulation of the seismic response of reinforced concrete buildings methods. Seismic risk analysis requires a very large number of repeated calculations to account for uncertainties of both the loading (seismichazard) and the nonlinear behaviour of structures. ln the first part of this work, a bibliographic study on seismic resolution models for reinforced concrete buildings is provided. This step allows collecting the maximum of necessary elements to understand and identify all the parameters, advantages, disadvantages and limits of use of each finite element calculation method. In the second part, a macro—elements for beam—column joint associated to a nonlinear behavior to reflect the response to the structure under seismic loads ls developed. Kinematic assumptions have been adopted to limit the number of degrees of freedom. The law of global shear behavior is described in the context of plasticity. A model with kinematic hardening is chosen to account for the dissipation due to cracking. Model parameters are identified from experimental results or pre-calculated by analysis on a local scale vla 3D finite element calculation or the implied "Modihed Compression Field Theory Numerical analyses were performed to validate the proposed approach against experimental tests available in the literature.
|
4 |
Development of Novel Computational Simulation Tools to Capture the Hysteretic Response and Failure of Reinforced Concrete Structures under Seismic LoadsMoharrami Gargari, Mohammadreza 26 July 2016 (has links)
Reinforced concrete (RC) structures constitute a significant portion of the building inventory in earthquake-prone regions of the United States. Accurate analysis tools are necessary to allow the quantitative assessment of the performance and safety offered by RC structures. Currently available analytical approaches are not deemed adequate, because they either rely on overly simplified models or are restricted to monotonic loading. The present study is aimed to establish analytical tools for the accurate simulation of RC structures under earthquake loads. The tools are also applicable to the simulation of reinforced masonry (RM) structures.
A new material model is formulated for concrete under multiaxial, cyclic loading conditions. An elastoplastic formulation, with a non-associative flow rule to capture compression-dominated response, is combined with a rotating smeared-crack model to capture the damage associated with tensile cracking. The proposed model resolves issues which characterize existing concrete material laws. Specifically, the newly proposed formulation accurately describes the crack opening/closing behavior and the effect of confinement on the strength and ductility under compressive stress states. The model formulation is validated with analyses both at the material level and at the component level. Parametric analyses on RC columns subjected to quasi-static cyclic loading are presented to demonstrate the need to regularize the softening laws due to the spurious mesh size effect and the importance of accounting for the increased ductility in confined concrete. The impact of the shape of the yield surface on the results is also investigated.
Subsequently, a three-dimensional analysis framework, based on the explicit finite element method, is presented for the simulation of RC and RM components under cyclic static and dynamic loading. The triaxial constitutive model for concrete is combined with a material model for reinforcing steel which can account for the material hysteretic response and for rupture due to low-cycle fatigue. The reinforcing steel bars are represented with geometrically nonlinear beam elements to explicitly account for buckling of the reinforcement. The strain penetration effect is also accounted for in the models. The modeling scheme is validated with the results of experimental static and dynamic tests on RC columns and RC/RM walls. The analyses are supplemented with a sensitivity study and with calibration guidelines for the proposed modeling scheme.
Given the computational cost and complexity of three-dimensional finite element models in the simulation of shear-dominated structures, the development of a conceptually simpler and computationally more efficient method is also pursued. Specifically, the nonlinear truss analogy is employed to capture the response of shear-dominated RC columns and RM walls subjected to cyclic loading. A step-by-step procedure to establish the truss geometry is described. The uniaxial material laws for the concrete and masonry are calibrated to account for the contribution of aggregate interlock resistance across inclined shear cracks. Validation analyses are presented, for quasi-static and dynamic tests on RC columns and RM walls. / Ph. D.
|
5 |
Different Approaches to Model Cover-Cracking of RC Structures due to CorrosionRoshan, Arman January 2018 (has links)
This thesis presents three different approaches to model corrosion-induced crack propagation in reinforced concrete structures. The first approach is solved numerically using finite differences to model the softening behaviour of concrete in tension. The second approach idealizes the concrete cover as either a brittle elastic or an elastoplastic material so that it may be solved using a closed-form solution. Both approaches are based on a thick-walled cylinder (TWC) analogy and consider rust compressibility and rust diffusion into cracks. The third approach uses finite element modelling to validate the application of the TWC and perform a parametric study. The results obtained using each approach are compared against each other as well as against experimental results. The TWC was found to be an appropriate analogy for the geometries and reinforcement configurations considered. Analytical models were found to provide upper and lower limits to the results based on the numerical model. The experimental data found in the literature showed reasonable agreement with predictions from the numerical and elastoplastic models.
|
6 |
Analogové elektronické emulátory obvodů neceločíselného řádu / Analogue emulators of fractional-order circuitsKubát, Pavel January 2021 (has links)
Diploma thesis deals with circuits contain fractional-order elements. The first part of this paper deals with this problem, there were also described methods of design fractionalorder elements and types of circuits containing the fractiona-order elements which can be applied in practice. Used active elements for practical part can be found in the second chapter. Design of GIC circuits and implementation of fractional-order element inside the circuit are shown in the last chapture. Parasitic analysis and stability of frequency filter containing fractional-order element had been also described.
|
Page generated in 0.0861 seconds