• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The structural integrity of precast concrete floor systems used as horizontal diaphragms

Bensalem, Kamel January 2001 (has links)
No description available.
2

Estudo dos mecanismos de transferência de tensões de cisalhamento em concreto fissurado com e sem reforço de fibras de aço: uma análise exploratória / Study of the mechanisms of transfer of shear stresses in fissured concrete with and without reinforcement of steel fibers: an exploratory analysis

Martins, Bárbara Gomes 28 July 2016 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-10-10T11:50:09Z No. of bitstreams: 2 Dissertação - Bárbara Gomes Martins - 2016.pdf: 9049119 bytes, checksum: 4e6655174bbb6b6cfda86ff2af34b902 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-10-10T11:50:28Z (GMT) No. of bitstreams: 2 Dissertação - Bárbara Gomes Martins - 2016.pdf: 9049119 bytes, checksum: 4e6655174bbb6b6cfda86ff2af34b902 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-10-10T11:50:28Z (GMT). No. of bitstreams: 2 Dissertação - Bárbara Gomes Martins - 2016.pdf: 9049119 bytes, checksum: 4e6655174bbb6b6cfda86ff2af34b902 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-07-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The steel fiber-reinforced concrete have been widely used in concrete pieces to improve their mechanical properties. This research is performed an exploratory experimental analysis in order to assess the contribution of steel fibers in the shear strength of the concrete. A methodology for evaluation of the direct shear strength and the direct tension of the concrete is developed, as well as to evaluate the shear stress transfer mechanism by aggregate interlock. From the tests, it evaluates the influence of steel fibers in the transfer mechanism of shear stresses through the aggregate interlock pre-cracked plans of concrete. In the experimental development was used medium strength concrete (60 MPa), with 12.5 mm coarse aggregate varying the volume of steel fibers in 0%, 0.5% and 1.5%. The results showed that the methodology developed to evaluate the resistance to direct tensile work, but there needs some modification in the molding of concrete specimens with fibers to prevent the concentration of fibers in the specimen faces, which resulted in reducing the tensile strength of concrete. As for the direct shear test with two planes, the results showed that the test methodology worked well until the maximum force, showing a reduction in the shear strength of the concrete when compared to similar tests, but with fixed supports. Finally, the results of direct shear testing on pre-cracked (push-off test) showed that the fibers contribute significantly to the effect of aggregate interlock by reducing the opening of the crack and the sliding interface for a given shear stress. / O concreto reforçado com fibras de aço tem sido bastante utilizado em peças de concreto a fim de melhorar suas propriedades mecânicas. Nesta pesquisa, é realizada uma análise experimental exploratória a fim de avaliar a contribuição das fibras de aço na resistência ao cisalhamento do concreto. É desenvolvida uma metodologia para avaliação da resistência ao cisalhamento direto e à tração direta do concreto, bem como para avaliação do mecanismo de transferência de tensões de cisalhamento por meio do intertravamento dos agregados. A partir dos ensaios, é avaliada a influência das fibras de aço no mecanismo de transferência de tensões de cisalhamento por meio do intertravamento dos agregados em planos pré-fissurados de concreto. No desenvolvimento experimental foi utilizado concreto de média resistência (60 MPa), com agregado graúdo de 12,5 mm, variando o volume de fibras de aço em 0%, 0,5% e 1,5%. Os resultados mostraram que a metodologia desenvolvida para avaliar a resistência à tração direta funcionou, porém há a necessidade de algumas modificações na moldagem dos corpos de prova do concreto com fibras para evitar a concentração de fibras nas faces do corpo de prova, o que resultou na redução da resistência à tração do concreto. Já para o ensaio de cisalhamento direto com dois planos, os resultados mostraram que a metodologia de ensaio funcionou bem até a força máxima, mostrando uma redução da resistência ao cisalhamento do concreto quando comparado a ensaios semelhantes, porém com apoios fixos. Por fim, os resultados dos ensaios de cisalhamento direto em plano pré- fissurado mostraram que as fibras contribuem significativamente no efeito do intertravamento dos agregados por meio da redução da abertura da fissura e do deslizamento da interface para uma determinada tensão de cisalhamento.
3

Geophysical Imaging and Numerical Modelling of Fractures in Concrete

Katsaga, Tatyana 13 August 2010 (has links)
The goal of this research is to investigate the fundamentals of fracturing processes in heterogeneous materials such as concrete using geophysical methods and dynamic micromechanical models. This work describes how different aspects of fracture formation in concrete can be investigated using a combination of Acoustic Emission (AE) techniques, ultrasonic wave velocity imaging, and high resolution Computed Tomography (CT). Fracture formation and evolution were studied during shear failure of large reinforced concrete beams and compressive failure of concrete samples. AE analysis includes studying complex spatial and temporal fracture development that precedes shear failure. Predominant microcrack mechanisms were analyzed at different stages of fracture formation. CT images were used to investigate the influence of concrete microstructure on fracture topography. Combined AE and CT damage evaluation techniques revealed different aspects of fracture development, thus expanding our understanding of AE events and their mechanisms. These images show how aggregate particles influence fracture nucleation and development. An emphasis has been placed on the role of coarse aggregates during the interlocking of fracture surfaces at transferring shear stresses. Ultrasonic wave velocity and AE techniques have been applied to uniaxial compression tests of concrete with various aggregate sizes and strengths similar to that of the concrete beams. AE parameters, p-wave velocities, and stress-strain data have been analyzed concurrently to image damage evolution under compression. Influence of material composition on microcracking and material state changes during loading has been investigated in detail. The results of compressive tests were used as building blocks for developing realistic micromechanical numerical models of concrete. The models were designed using a distinct element code, where material is modelled through the combination of bonded particles. A number of procedures were developed to transfer the exact microstructure of material incorporating its visual representation into the model. The models’ behaviour has been verified against experimental data. It was shown that these models exhibit realistic micromechanical behaviour. The results of the experimental investigation of concrete fracturing were expanded by modelling more cases with aggregate size and strength variations. It was shown that geophysical imaging techniques, along with advanced micromechanical numerical modelling, can help us understand damage formation and evolution.
4

Geophysical Imaging and Numerical Modelling of Fractures in Concrete

Katsaga, Tatyana 13 August 2010 (has links)
The goal of this research is to investigate the fundamentals of fracturing processes in heterogeneous materials such as concrete using geophysical methods and dynamic micromechanical models. This work describes how different aspects of fracture formation in concrete can be investigated using a combination of Acoustic Emission (AE) techniques, ultrasonic wave velocity imaging, and high resolution Computed Tomography (CT). Fracture formation and evolution were studied during shear failure of large reinforced concrete beams and compressive failure of concrete samples. AE analysis includes studying complex spatial and temporal fracture development that precedes shear failure. Predominant microcrack mechanisms were analyzed at different stages of fracture formation. CT images were used to investigate the influence of concrete microstructure on fracture topography. Combined AE and CT damage evaluation techniques revealed different aspects of fracture development, thus expanding our understanding of AE events and their mechanisms. These images show how aggregate particles influence fracture nucleation and development. An emphasis has been placed on the role of coarse aggregates during the interlocking of fracture surfaces at transferring shear stresses. Ultrasonic wave velocity and AE techniques have been applied to uniaxial compression tests of concrete with various aggregate sizes and strengths similar to that of the concrete beams. AE parameters, p-wave velocities, and stress-strain data have been analyzed concurrently to image damage evolution under compression. Influence of material composition on microcracking and material state changes during loading has been investigated in detail. The results of compressive tests were used as building blocks for developing realistic micromechanical numerical models of concrete. The models were designed using a distinct element code, where material is modelled through the combination of bonded particles. A number of procedures were developed to transfer the exact microstructure of material incorporating its visual representation into the model. The models’ behaviour has been verified against experimental data. It was shown that these models exhibit realistic micromechanical behaviour. The results of the experimental investigation of concrete fracturing were expanded by modelling more cases with aggregate size and strength variations. It was shown that geophysical imaging techniques, along with advanced micromechanical numerical modelling, can help us understand damage formation and evolution.
5

Development of Novel Computational Simulation Tools to Capture the Hysteretic Response and Failure of Reinforced Concrete Structures under Seismic Loads

Moharrami Gargari, Mohammadreza 26 July 2016 (has links)
Reinforced concrete (RC) structures constitute a significant portion of the building inventory in earthquake-prone regions of the United States. Accurate analysis tools are necessary to allow the quantitative assessment of the performance and safety offered by RC structures. Currently available analytical approaches are not deemed adequate, because they either rely on overly simplified models or are restricted to monotonic loading. The present study is aimed to establish analytical tools for the accurate simulation of RC structures under earthquake loads. The tools are also applicable to the simulation of reinforced masonry (RM) structures. A new material model is formulated for concrete under multiaxial, cyclic loading conditions. An elastoplastic formulation, with a non-associative flow rule to capture compression-dominated response, is combined with a rotating smeared-crack model to capture the damage associated with tensile cracking. The proposed model resolves issues which characterize existing concrete material laws. Specifically, the newly proposed formulation accurately describes the crack opening/closing behavior and the effect of confinement on the strength and ductility under compressive stress states. The model formulation is validated with analyses both at the material level and at the component level. Parametric analyses on RC columns subjected to quasi-static cyclic loading are presented to demonstrate the need to regularize the softening laws due to the spurious mesh size effect and the importance of accounting for the increased ductility in confined concrete. The impact of the shape of the yield surface on the results is also investigated. Subsequently, a three-dimensional analysis framework, based on the explicit finite element method, is presented for the simulation of RC and RM components under cyclic static and dynamic loading. The triaxial constitutive model for concrete is combined with a material model for reinforcing steel which can account for the material hysteretic response and for rupture due to low-cycle fatigue. The reinforcing steel bars are represented with geometrically nonlinear beam elements to explicitly account for buckling of the reinforcement. The strain penetration effect is also accounted for in the models. The modeling scheme is validated with the results of experimental static and dynamic tests on RC columns and RC/RM walls. The analyses are supplemented with a sensitivity study and with calibration guidelines for the proposed modeling scheme. Given the computational cost and complexity of three-dimensional finite element models in the simulation of shear-dominated structures, the development of a conceptually simpler and computationally more efficient method is also pursued. Specifically, the nonlinear truss analogy is employed to capture the response of shear-dominated RC columns and RM walls subjected to cyclic loading. A step-by-step procedure to establish the truss geometry is described. The uniaxial material laws for the concrete and masonry are calibrated to account for the contribution of aggregate interlock resistance across inclined shear cracks. Validation analyses are presented, for quasi-static and dynamic tests on RC columns and RM walls. / Ph. D.
6

Desenvolvimento de modelos mecânicos, de confiabilidade e de otimização para aplicação em estruturas de concreto armado / Development of mechanical, reliability and optimization models for application in reinforced concrete structures

Nogueira, Caio Gorla 12 May 2010 (has links)
Este trabalho apresenta desenvolvimentos na modelagem mecânica de estruturas de barras em concreto armado, bem como no acoplamento entre modelos de confiabilidade e otimização do tipo RBDO para obtenção de dimensões ótimas, respeitando os requisitos de segurança especificados em projeto. Quanto à modelagem mecânica via Método dos Elementos Finitos (MEF), além do comportamento não-linear geométrico e dos materiais, foi considerada a contribuição dos mecanismos complementares de resistência ao cisalhamento, dados pelo engrenamento de agregados e efeito de pino das armaduras longitudinais. Além disso, um modelo simplificado que avalia a contribuição da armadura transversal também foi proposto. Foi desenvolvida uma formulação de otimização que deixa a posição da linha neutra livre, ao contrário de formulações existentes. Esta formulação resultou em projetos mais economicos dos que aqueles encontrados na literatura. Na questão do acoplamento de confiabilidade e otimização, foram exploradas melhorias no Método de Superfície de Resposta e no acoplamento direto via Método de Confiabilidade de Primeira Ordem e Técnica dos Gradientes Numéricos. Estas resultaram em maior precisão dos resultados e aumento na velocidade de convergência. Os modelos mecânicos, incluindo análise não-linear e mecanismos complementares, a formulação de otimização e as técnicas de confiabilidade foram implementados em um programa computacional para dimensionamento ótimo de elementos em concreto armado. O programa foi utilizado na resolução de vários problemas-exemplo. Verificou-se que a consideração dos mecanismos complementares de resistência ao cisalhamento produziram acréscimo na carga última, quando comparadas com as respostas sem tais efeitos. Verificou-se também que os mesmos mecanismos produziram um aumento, até mais significativo, nos índices de confiabilidade obtidos. As dimensões ótimas de elementos estruturais também foram comparadas, considerando-se modelos lineares e não-lineares dos materiais. O estudo mostrou que os custos da estrutura otimizada são menores, quando se considera os efeitos de comportamento não-linear dos materiais. / This work presents some developments in the mechanical modeling of reinforced concrete bar structures, as well in the coupling of reliability and RBDO optimization models, with the purpose of obtaining optimal dimensions considering the safety requirements specified in design. As for the mechanical modeling via Finite Element Method (FEM), in addition to geometrical and material nonlinear behaviors, the contribution of shear resistance complementary mechanisms (aggregate interlock and dowel action of longitudinal reinforcement) was taken into account. Moreover, a simplified model that evaluates the contribution of shear reinforcement was also proposed. In an improvement of existing formulations, an optimization scheme was developed which leaves the position of the neutral axis free. This improvement resulted in more economical cross-sections, than those found in the literature. With respect to the coupling of reliability and optimization methods, improvements were sought in the Response Surface Method and in the direct coupling via First Order Reliability and Numerical Gradients methods. These improvements resulted in greater precision and in increased convergence speed. The mechanical models, including non linear effects and complementary mechanisms , the optimization and reliability formulations were implemented in a computational code for the optimum design of reinforced concrete structures. The program was used to solve a number of example problems. It was found that the complementary mechanisms resulted in an increase of ultimate loads, when compared to the response obtained without these effects. These mechanisms also resulted in an even greater increase of the elements reliability. Optimal dimensions of the structural elements were also compared, considering linear and non-linear material models. The cost of the optimum structure was found to be smaller when non linear effects are taken into account.
7

Desenvolvimento de modelos mecânicos, de confiabilidade e de otimização para aplicação em estruturas de concreto armado / Development of mechanical, reliability and optimization models for application in reinforced concrete structures

Caio Gorla Nogueira 12 May 2010 (has links)
Este trabalho apresenta desenvolvimentos na modelagem mecânica de estruturas de barras em concreto armado, bem como no acoplamento entre modelos de confiabilidade e otimização do tipo RBDO para obtenção de dimensões ótimas, respeitando os requisitos de segurança especificados em projeto. Quanto à modelagem mecânica via Método dos Elementos Finitos (MEF), além do comportamento não-linear geométrico e dos materiais, foi considerada a contribuição dos mecanismos complementares de resistência ao cisalhamento, dados pelo engrenamento de agregados e efeito de pino das armaduras longitudinais. Além disso, um modelo simplificado que avalia a contribuição da armadura transversal também foi proposto. Foi desenvolvida uma formulação de otimização que deixa a posição da linha neutra livre, ao contrário de formulações existentes. Esta formulação resultou em projetos mais economicos dos que aqueles encontrados na literatura. Na questão do acoplamento de confiabilidade e otimização, foram exploradas melhorias no Método de Superfície de Resposta e no acoplamento direto via Método de Confiabilidade de Primeira Ordem e Técnica dos Gradientes Numéricos. Estas resultaram em maior precisão dos resultados e aumento na velocidade de convergência. Os modelos mecânicos, incluindo análise não-linear e mecanismos complementares, a formulação de otimização e as técnicas de confiabilidade foram implementados em um programa computacional para dimensionamento ótimo de elementos em concreto armado. O programa foi utilizado na resolução de vários problemas-exemplo. Verificou-se que a consideração dos mecanismos complementares de resistência ao cisalhamento produziram acréscimo na carga última, quando comparadas com as respostas sem tais efeitos. Verificou-se também que os mesmos mecanismos produziram um aumento, até mais significativo, nos índices de confiabilidade obtidos. As dimensões ótimas de elementos estruturais também foram comparadas, considerando-se modelos lineares e não-lineares dos materiais. O estudo mostrou que os custos da estrutura otimizada são menores, quando se considera os efeitos de comportamento não-linear dos materiais. / This work presents some developments in the mechanical modeling of reinforced concrete bar structures, as well in the coupling of reliability and RBDO optimization models, with the purpose of obtaining optimal dimensions considering the safety requirements specified in design. As for the mechanical modeling via Finite Element Method (FEM), in addition to geometrical and material nonlinear behaviors, the contribution of shear resistance complementary mechanisms (aggregate interlock and dowel action of longitudinal reinforcement) was taken into account. Moreover, a simplified model that evaluates the contribution of shear reinforcement was also proposed. In an improvement of existing formulations, an optimization scheme was developed which leaves the position of the neutral axis free. This improvement resulted in more economical cross-sections, than those found in the literature. With respect to the coupling of reliability and optimization methods, improvements were sought in the Response Surface Method and in the direct coupling via First Order Reliability and Numerical Gradients methods. These improvements resulted in greater precision and in increased convergence speed. The mechanical models, including non linear effects and complementary mechanisms , the optimization and reliability formulations were implemented in a computational code for the optimum design of reinforced concrete structures. The program was used to solve a number of example problems. It was found that the complementary mechanisms resulted in an increase of ultimate loads, when compared to the response obtained without these effects. These mechanisms also resulted in an even greater increase of the elements reliability. Optimal dimensions of the structural elements were also compared, considering linear and non-linear material models. The cost of the optimum structure was found to be smaller when non linear effects are taken into account.

Page generated in 0.0681 seconds