• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modal Logics of Topological Relations

Lutz, Carsten, Wolter, Frank 31 May 2022 (has links)
The eight topological RCC8(or Egenhofer-Franzosa)- relations between spatial regions play a fundamental role in spatial reasoning, spatial and constraint databases, and geographical information systems. In analogy with Halpern and Shoham’s modal logic of time intervals based on the Allen relations, we introduce a family of modal logics equipped with eight modal operators that are interpreted by the RCC8-relations. The semantics is based on region spaces induced by standard topological spaces, in particular the real plane. We investigate the expressive power and computational complexity of the logics obtained in this way. It turns our that, similar to Halpern and Shoham’s logic, the expressive power is rather natural, but the computational behavior is problematic: topological modal logics are usually undecidable and often not even recursively enumerable. This even holds if we restrict ourselves to classes of finite region spaces or to substructures of region spaces induced by topological spaces. We also analyze modal logics based on the set of RCC5relations, with similar results.
2

Inferring intentions through state representations in cooperative human-robot environments / Déduction d’intentions au travers de la représentation d’états au sein des milieux coopératifs entre homme et robot

Schlenoff, Craig 30 June 2014 (has links)
Les humains et les robots travaillant en toute sécurité et en parfaite harmonie dans un environnement est l'un des objectifs futurs de la communauté robotique. Quand les humains et les robots peuvent travailler ensemble dans le même espace, toute une catégorie de tâches devient prête à l'automatisation, allant de la collaboration pour l'assemblage de pièces, à la manutention de pièces et de materiels ainsi qu'à leur livraison. Garantir la sûreté des humains nécessite que le robot puisse être capable de surveiller la zone de travail, déduire l'intention humaine, et être conscient suffisamment tôt des dangers potentiels afin de les éviter.Des normes existent sur la collaboration entre robots et humains, cependant elles se focalisent à limiter les distances d'approche et les forces de contact entre l'humain et le robot. Ces approches s'appuient sur des processus qui se basent uniquement sur la lecture des capteurs, et ne tiennent pas compte des états futurs ou des informations sur les tâches en question. Un outil clé pour la sécurité entre des robots et des humains travaillant dans un environnement inclut la reconnaissance de l'intention dans lequel le robot tente de comprendre l'intention d'un agent (l'humain) en reconnaissant tout ou partie des actions de l'agent pour l'aider à prévoir les actions futures de cet agent. La connaissance de ces actions futures permettra au robot de planifier sa contribution aux tâches que l'humain doit exécuter ou au minimum, à ne pas se mettre dans une position dangereuse.Dans cette thèse, nous présentons une approche qui est capable de déduire l'intention d'un agent grâce à la reconnaissance et à la représentation des informations de l'état. Cette approche est différente des nombreuses approches présentes dans la littérature qui se concentrent principalement sur la reconnaissance de l'activité (par opposition à la reconnaissance de l'état) et qui « devinent » des raisons pour expliquer les observations. Nous déduisons les relations détaillées de l'état à partir d'observations en utilisant Region Connection Calculus 8 (RCC-8) et ensuite nous déduisons les relations globales de l'état qui sont vraies à un moment donné. L'utilisation des informations sur l'état sert à apporter une contribution plus précise aux algorithmes de reconnaissance de l'intention et à générer des résultats qui sont equivalents, et dans certains cas, meilleurs qu'un être humain qui a accès aux mêmes informations. / Humans and robots working safely and seamlessly together in a cooperative environment is one of the future goals of the robotics community. When humans and robots can work together in the same space, a whole class of tasks becomes amenable to automation, ranging from collaborative assembly to parts and material handling to delivery. Proposed standards exist for collaborative human-robot safety, but they focus on limiting the approach distances and contact forces between the human and the robot. These standards focus on reactive processes based only on current sensor readings. They do not consider future states or task-relevant information. A key enabler for human-robot safety in cooperative environments involves the field of intention recognition, in which the robot attempts to understand the intention of an agent (the human) by recognizing some or all of their actions to help predict the human’s future actions.We present an approach to inferring the intention of an agent in the environment via the recognition and representation of state information. This approach to intention recognition is different than many ontology-based intention recognition approaches in the literature as they primarily focus on activity (as opposed to state) recognition and then use a form of abduction to provide explanations for observations. We infer detailed state relationships using observations based on Region Connection Calculus 8 (RCC-8) and then infer the overall state relationships that are true at a given time. Once a sequence of state relationships has been determined, we use a Bayesian approach to associate those states with likely overall intentions to determine the next possible action (and associated state) that is likely to occur. We compare the output of the Intention Recognition Algorithm to those of an experiment involving human subjects attempting to recognize the same intentions in a manufacturing kitting domain. The results show that the Intention Recognition Algorithm, in almost every case, performed as good, if not better, than a human performing the same activity.

Page generated in 0.0225 seconds