191 |
Utilização de redes neurais artificiais para a classificação da resistência a antimicrobianos e sua relação com a presença de 38 genes associados a virulência isolados de amostras de Escherichia coli provenientes de frangos de corteRocha, Daniela Tonini da January 2012 (has links)
A Escherichia coli patogênica aviária (APEC), pertence à família Enterobacteriacea, é responsável por vários processos patológicos nas aves, atuando como agente primário ou secundário na aerossaculite, pericardite, perihepatite, peritonite, salpingite, onfalite, celulite, entre outros. O presente estudo aborda a resistência a antimicrobianos de amostras de E. coli (APEC) de uma forma inovadora, utilizando como ferramenta as redes neurais artificiais, metodologia inserida na linha de pesquisa do CDPA (Centro de Diagnóstico e Pesquisa em Patologia Aviária). A utilização de inteligência artificial, especificamente, as redes neurais artificiais (RNAs), está sendo crescentemente empregada como ferramenta para a análise de dados não lineares e multivariados, característica comum em fenômenos biológicos. O objetivo do presente trabalho foi demonstrar que é possível predizer o uso de antimicrobianos, utilizando trinta e oito genes responsáveis por distintos fatores de virulência, oriundos das amostras de Escherichia coli isoladas de frango de corte, através das redes neurais artificiais (RNAs). Além disso, verificou-se a relação entre o índice de patogenicidade (IP) e a resistência aos quatorze antimicrobianos que fazem parte do banco de dados usado para o desenvolvimento deste estudo. Neste trabalho foram utilizados os dados disponíveis referentes a 256 amostras de E. coli isoladas de camas de aviários, lesões de celulite e quadros respiratórios de frangos de corte. Para a confecção das redes neurais artificiais as entradas escolhidas foram: os índices de patogenicidade, as lesões induzidas em pintos de um dia de idade, a caracterização dos genes associados à patogenicidade, o bioquimismo, a origem das amostras e por fim, a motilidade. As redes neurais artificiais foram criadas realizando associações entre as variáveis de entrada com o objetivo de encontrar o modelo mais ajustado. As saídas utilizadas de acordo com Salle (2009) foram o comportamento das cepas de Escherichia coli frente aos 14 antimicrobianos. Para verificar se existia diferença significativa entre as médias dos índices de patogenicidade (IP) e as amostras sensíveis e resistentes aos 14 antimicrobianos utilizados neste estudo, realizou-se análise estatística com o auxílio do software JMP® 9.0.1 (SAS Institute Inc., 2010). Os resultados obtidos demonstram que as redes neurais artificiais foram capazes de realizar a classificação correta do comportamento das amostras com amplitude de 74,22% a 98,44%, desta forma tornando possível predizer a resistência antimicrobiana da Escherichia coli, através de modelo das RNAs. A análise estatística realizada para verificar a relação entre o IP e a resistência aos 14 antimicrobianos demonstrou que estas são variáveis independentes. Ou seja, podem haver picos no IP sem alteração na resistência antimicrobiana, ou até mesmo o contrário, alterações na resistência antimicrobiana sem mudanças no IP. / The avian pathogenic Escherichia coli (APEC), belongs to the family Enterobacteriacea, is responsible for various pathological processes in poultry, acting as an agent in the primary or secondary lesion such as: sacculitis, pericarditis, perihepatitis, peritonitis, salpingitis, omphalitis, cellulitis, among others. This study addresses the antimicrobial resistance of E. coli (APEC) strains in an innovative way, using tools such as artificial neural networks, methodology embedded in the CDPA´s search line (Center for Diagnostics and Research in Avian Pathology). The use of artificial intelligence, specifically artificial neural networks (RNAs), is being increasingly used as a tool for data analysis and nonlinear multivariate, common feature in biological phenomena. The objective of this study was to demonstrate that it is possible to predict the use of antimicrobials, using thirty-eight distinct genes responsible for virulence factors, derived from Escherichia coli isolates from broiler, through artificial neural networks (ANNs). Besides, it was found the relationship between pathogenicity index (PI) and resistance to fourteen antimicrobial forming part of the database used for the development of this study. In this study was used the data available for 256 samples of E. coli isolated from broiler litter, lesion of cellulitis and respiratory symptoms in broilers. To make the neural network inputs have been chosen: the indices of pathogenicity, the induced lesions in chicks at day old, characterization of genes associated with pathogenicity, biochemism, the source of samples and finally motility. Artificial neural networks have been created making associations between the input variables in order to find the best adjusted model. The outputs used according Salle (2009) was the behavior of Escherichia coli strains compared to 14 antimicrobials. To check whether there was a significant difference between the average indices for pathogenicity (IP) and the sensitive and resistant samples to 14 antimicrobials used in this study, statistical analysis was performed with the help of software JMP ® 9.0.1 (SAS Institute Inc., 2010). The results show that artificial neural networks were able of performing correct classification of the behavior of the samples with an amplitude of 74.22% to 98.44%, thereby making it possible to predict the antibiotic resistance of Escherichia coli, using ANNs model. The statistical analysis performed to assess the relationship between IP and resistance to 14 antibiotics showed that these variables are independent. That is, it can happen peaks in IP without change in antimicrobial resistance, or even the opposite, changes in antimicrobial resistance without changes in IP.
|
192 |
Análise empírica da formação de expectativas de inflação no Brasil : uma aplicação de redes neurais artificiais a dados em painelPalma, Andreza Aparecida January 2007 (has links)
O objetivo principal deste trabalho é estudar empiricamente o processo de formação de expectativas inflacionárias no Brasil, no período recente (pós metas de inflação), através de um modelo conexionista, que aproxima a forma como os agentes fazem previsões. A coordenação das expectativas do mercado em relação à inflação futura é um aspecto crucial do regime de metas de inflação. Dessa forma, entender os fatores que afetam tais expectativas é de grande relevância para o direcionamento adequado da política monetária. Os dados para expectativas de inflação utilizados são provenientes da pesquisa FOCUS do Banco Central do Brasil, e constituem um painel de dados não balanceado. Os resultados obtidos nos permitem afirmar que a maior influência sobre as expectativas inflacionárias no período como um todo foi da volatilidade cambial, seguida pela variação no preço das commodities, pela defasagem de ordem um das expectativas, pela variação cambial e pela meta. Em menor magnitude, afetam as expectativas o resultado primário do governo, a defasagem de ordem dois e a taxa Selic. O comportamento desse efeito ao longo do tempo foi verificado através da análise de sensibilidade do produto da rede em resposta a cada uma das variáveis. No período de crise de confiança, há um expressivo descolamento das expectativas em relação à meta, com um aumento do efeito das demais variáveis. Resultado inverso ocorre no período pós-crise: o efeito da meta de inflação aumenta e das demais variáveis tende a se reduzir, ainda que em alguns casos tais efeitos sejam expressivos (como da defasagem de ordem um e da volatilidade cambial). Isso nos leva a concluir que o Banco Central vem consolidando sua credibilidade ao longo do tempo, mas que há ainda espaço para melhorias. / This work aims to empirically study the formation process of inflationary expectations in Brazil, in the recent period (after the introduction of the inflation targeting policy) by a connexionist model that approaches the way agents forecast. The coordination of market expectations in relation to the future inflation is a crucial aspect of the inflation targeting. This way, understanding the factors that affect such expectations has great relevance for the adequate aiming of the monetary policies. The data for inflation expectations used in this work are from the FOCUS research of the Brazilian Central Bank, and it constitutes a unbalanced data panel. The results obtained allow us to affirm that the biggest influence on the inflationary expectations in the period as a whole was from exchange rate volatility, followed by the commodities prices variation, by the first order lag of the expectations, by the exchange rate variation and by the target. In lesser magnitude, the primary result of the government, the second order lag and the Selic tax affect the expectations. The behavior of this effect throughout the time was verified through the analysis of sensitivity of the product of the network in reply to each one of the inputs. In the period of reliable crisis, there is an expressive shift of the expectations in relation to the target, with an increase of the effect of the other variables. Inverse result occurs in the after-crisis period: the effect of the inflation target increases and of the other variables tend to be reduced, despite in some cases such effect are expressive (as the first order lag and exchange rate volatility). Thus we may conclude that the Brazilian Central Bank has been consolidating its credibility throughout the time, but there is still an open space for improvements.
|
193 |
RECONHECIMENTO DE PADRÕES DE VIBRAÇÃO EM MÁQUINAS ROTATIVAS UTILIZANDO REDE NEURAL ARTIFICIALPACHECO, JOSÉ ROBERTO DA SILVA 07 December 2007 (has links)
Submitted by Diogo Barreiros (diogo.barreiros@ufba.br) on 2017-02-17T15:32:24Z
No. of bitstreams: 1
Dissertação J R Pacheco.pdf: 628707 bytes, checksum: 7d202afb9b4dff0b0674f5ffc4fd9874 (MD5) / Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-02-17T15:40:03Z (GMT) No. of bitstreams: 1
Dissertação J R Pacheco.pdf: 628707 bytes, checksum: 7d202afb9b4dff0b0674f5ffc4fd9874 (MD5) / Made available in DSpace on 2017-02-17T15:40:03Z (GMT). No. of bitstreams: 1
Dissertação J R Pacheco.pdf: 628707 bytes, checksum: 7d202afb9b4dff0b0674f5ffc4fd9874 (MD5) / Esta dissertação tem como objetivo principal o desenvolvimento de uma metodologia de reconhecimento de padrões de vibração em máquinas rotativas utilizando redes neurais artificiais. A proposta é reproduzir o diagnóstico dado por especialistas em vibração ao analisar um espectro de freqüência gerado a partir de dados de vibração coletado por sensores instalados em diversos pontos de uma máquina rotativa. Juntamente com a metodologia foi desenvolvido um algoritmo em programa Matlab, software amplamente utilizado e conhecido nos meios acadêmicos. De modo diferente do que é encontrado em sistemas industriais comercializados por empresas especializadas, o código do programa é aberto e com isto pode ser compreendido, aperfeiçoado ou ampliado por outros pesquisadores, especialistas em vibração ou engenheiros de manutenção. Pode também ser ajustado a condições próprias de cada instalação ou características de operação de grupo de máquinas a ser analisado. Os dados de vibração foram obtidos de uma empresa especializada que atua no Pólo Petroquímico de Camaçari. Com o uso desta metodologia, o pesquisador ou profissional da área de manutenção pode, a partir de dados gerados por coletores de dados de vibração, aplicar o método para desenvolver, por exemplo, um programa de manutenção preditiva para um grupo de máquinas. Devido ao foco do trabalho ser de caráter aplicativo, é evitado o uso de demonstrações matemáticas, focando em utilização de ferramentas já dominadas como a Análise de Fourier e algoritmos para redes neurais, amplamente disponíveis na literatura. Uma das contribuições deste trabalho é mostrar que um sistema de reconhecimento de padrões de vibração pode ser desenvolvido facilmente a partir das ferramentas citadas, com baixo custo e sem necessidade de um modelo matemático específico para a máquina a ser analisada. Uma outra contribuição é mostrar mais um estudo de caso de aplicações de redes neurais em manutenção preditiva de máquinas. Os fundamentos para o desenvolvimento de um software aberto para monitoração e diagnóstico de vibração foram definidos. Restringe-se o âmbito da pesquisa a problemas de vibração causados por desbalanceamento do rotor ou desalinhamento do eixo em máquinas rotativas, problemas que são considerados bastante comuns em um ambiente industrial
|
194 |
Uma plataforma para predição do consumo de energia elétrica: modelagem empírica e aplicações em lojas de um shopping centerCarvalho, Gregor Gama de 13 December 2016 (has links)
Submitted by Gregor Carvalho (gregor_gama@hotmail.com) on 2017-07-12T18:32:30Z
No. of bitstreams: 1
Dissertação corrigida Gregor Gama 2.pdf: 12204335 bytes, checksum: f25239894e7f38e5a4d870e1b28f4637 (MD5) / Approved for entry into archive by Flávia Sousa (flaviabs@ufba.br) on 2017-07-13T17:14:06Z (GMT) No. of bitstreams: 1
Dissertação corrigida Gregor Gama 2.pdf: 12204335 bytes, checksum: f25239894e7f38e5a4d870e1b28f4637 (MD5) / Made available in DSpace on 2017-07-13T17:14:07Z (GMT). No. of bitstreams: 1
Dissertação corrigida Gregor Gama 2.pdf: 12204335 bytes, checksum: f25239894e7f38e5a4d870e1b28f4637 (MD5) / Os Shopping Centers (SCs) são considerados grandes centros comerciais, oferecendo uma variedade de produtos e serviços aos consumidores. Cada loja torna-se uma unidade independente, sendo a responsável individual pelo seu consumo de telefonia, internet, água e gás em alguns casos, e sobretudo energia elétrica. A tarifação do consumo mensal de energia elétrica é realizada através do registro e processamento de um valor lido em um equipamento específico, chamado de medidor de energia. O SC compra energia elétrica de uma concessionária, e, a partir da sua subestação elétrica, distribui para todos os seus consumidores internos. A administração do SC é a responsável por realizar a medição mensal do consumo de energia, em cada loja. Com a aplicação de uma equação teórica para o cálculo de consumo elétrico, é possível calcular o consumo mensal ou parcial de energia em uma loja ou estabelecimento. A equação requer, como entradas, os valores das correntes elétricas em todas as fases que energizam um estabelecimento. Em algumas circunstâncias, essa estimativa de consumo se torna imprescindível, tais como: a falha ou a troca de medidores integralizadores, a avaliação de consumo em lojas recém-inauguradas (que não possuam medidores instalados), em casos confirmados de erros nos medidores, etc. A proposta deste trabalho é o desenvolvimento de um protótipo de medição online do consumo de energia. O protótipo é equipado com um Microcontrolador e embarca um software capaz de estimar o consumo mensal ou parcial de energia em uma loja ou estabelecimento. O software implementa um modelo empírico desenvolvido, baseado em uma Rede Neural Artificial (RNA), e foi projetado sob a plataforma MATrix LABoratory (MATLAB)⃝R . O modelo desenvolvido tem como saída a previsão do consumo mensal de energia elétrica para uma loja. Os resultados são apresentados em uma interface World Wide Web (WWW), também criada no escopo deste projeto. A interface WWW permite que um consumidor acompanhe a estimativa do seu consumo mensal de energia, ou seja, permite, através da internet, o acompanhamento, em tempo real, da evolução da conta de energia de seu estabelecimento. / The Shopping malls are considered large shopping centers, offering a variety of products and services to consumers. Each store becomes an independent unit, being responsible for its individual consumption of telephony, internet, water and gas in some cases, and particularly electrical energy. The charging of the monthly consumption of electrical energy is conducted through the registry and processing of a value read in a specific equipment, called a power meter. The Shopping Center (SC) purchases electricity from an Electrical Power Concession, delivered from its electrical substation, and distributes to all its associated consumers. The Administration of the SC is responsible for the monthly measurement of energy consumption in each store. With the application of a theoretical equation for the calculation of electric consumption, it is possible to calculate the monthly or partial consumption of power in a shop or business establishment. The equation requires, as inputs, the values of electrical currents in all phases to energize an establishment. In some circumstances, this estimate of consumption becomes essential, as the following cases: failure or the exchange of accumulators meters, the evaluation of consumption in newly opened shops (which do not have meters installed), in confirmed cases of errors in meters, etc. The purpose of this work is the development of a prototype of an online meter of energy consumption. The prototype is equipped with a microcontroller and its developed software, capable to estimate the monthly or partial consumption of power in a shop or establishment. The software implements a model developed and is based on an Artificial Neural Network (ANN), and was designed under the MATrix LABoratory (MATLAB)⃝R platform. The model developed has as output the prediction of the monthly consumption of electrical energy to a business establishment. The results are presented in an interface with the WWW, also created in the scope of this project. The WWW interface allows a consumer to follow on line his estimated monthly or partial consumption of energy, i.e., allows monitoring, in real time, via the internet, the evolution of the energy bill of his establishment.
|
195 |
Estimação de Parâmetros, Inferência e Controle de Propriedades de Qualidade de um Processo de Copolimerização de EtenoNogueira, Idelfonso Bessa dos Reis 30 April 2016 (has links)
Submitted by Idelfonso Nogueira (idelfonso.nogueira@gmail.com) on 2017-10-05T08:02:15Z
No. of bitstreams: 1
Dissertação_Idelfonso_Nogueira_VF.pdf: 3403905 bytes, checksum: 7d72015c2e2a00dadc3131d5e9abbb57 (MD5) / Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-10-06T15:24:37Z (GMT) No. of bitstreams: 1
Dissertação_Idelfonso_Nogueira_VF.pdf: 3403905 bytes, checksum: 7d72015c2e2a00dadc3131d5e9abbb57 (MD5) / Made available in DSpace on 2017-10-06T15:24:37Z (GMT). No. of bitstreams: 1
Dissertação_Idelfonso_Nogueira_VF.pdf: 3403905 bytes, checksum: 7d72015c2e2a00dadc3131d5e9abbb57 (MD5) / FAPESB / A estimação de parâmetros de modelos de polimerização nem sempre é uma tarefa
trivial. Normalmente tais modelos configuram-se com dezenas de parâmetros, com
alguns deles correlacionados entre si. O excessivo número de parâmetros e as possíveis
correlações dificultam a resolução do problema de otimização associado à estimação.
Além disto, a falta de informações sobre alguns sistemas e a obtenção de dados
industriais tornam esta tarefa ainda mais complexa.
A primeira parte deste trabalho tem por objetivo apresentar a estimação dos
parâmetros de um modelo para a copolimerização de eteno em solução com
comonômero e catalisadores para a produção de polietileno linear de baixa densidade
(PELBD). O problema da estimação destes parâmetros foi solucionado através da análise
de estimabilidade do sistema. De um número inicial de 69 parâmetros a análise
possibilitou uma redução para 28 parâmetros a serem estimados. Por fim, o modelo foi
validade a partir de dados obtidos do histórico operacional da planta.
A estimação dos parâmetros e a validação de tal modelo possibilitou o estudo da
inferência e do controle da qualidade do processo. Em relação à inferência foi proposto
o desenvolvimento de modelos empíricos baseados nas redes neurais artificiais para
realizarem a predição online do índice de fluidez e da densidade da resina produzida. O
modelo empírico foi desenvolvido a partir de dados gerados pelo modeloV
fenomenológico. Os resultados demonstram que o modelo é capaz de representar com
eficiência o comportamento dinâmico das variáveis preditas.
Por fim, o problema de controle de qualidade da resina polimérica foi abordado. Três
propostas de controle foram desenvolvidas e comparadas entre si, o controle preditivo
baseado em modelos (MPC), o controle preditivo de horizonte de predição infinito
(IHMPC) e o controle preditivo robusto baseado em modelos (RIHMPC). Os resultados
demonstraram que o RIHMPC consegue controlar o processo de forma mais eficiente
do que os demais controladores analisados.
|
196 |
Predição de propriedades de gasolinas a partir das suas composiçõesBuarque, Hugo Leonardo de Brito January 2006 (has links)
BUARQUE, Hugo Leonardo de Brito. Predição de propriedades de gasolinas a partir das suas composições. 2006. 206f. Tese (Doutorado em Física) - Curso de Pós-Graduação em Física, Universidade Federal do Ceará, Fortaleza, 2006. / Submitted by francisco lima (admir@ufc.br) on 2013-04-12T13:50:23Z
No. of bitstreams: 1
2006_tese_hldbbuarque.pdf: 89844 bytes, checksum: 09dd0a3616e88ec1e47ab52519f63da5 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2014-02-25T20:59:40Z (GMT) No. of bitstreams: 1
2006_tese_hldbbuarque.pdf: 89844 bytes, checksum: 09dd0a3616e88ec1e47ab52519f63da5 (MD5) / Made available in DSpace on 2014-02-25T20:59:40Z (GMT). No. of bitstreams: 1
2006_tese_hldbbuarque.pdf: 89844 bytes, checksum: 09dd0a3616e88ec1e47ab52519f63da5 (MD5)
Previous issue date: 2006 / Commercial gasolines are normally produced by blendin g hydrocarbon fractions
obtained from the distillation of crude oil or from o ther petrochemical or refining
processes, and carried through in order to comply with a variety of legal and ambient
specifications at minimum cost. The quality for the use a nd commercialization of
gasolines is evaluated through certain characteristics specified by governmental
regulation. Such characteristics are usually determined by different methodologies
and experimental techniques, since those depend on the ir constituents and their
respective concentrations with a high complexity. Thus, blending of gasolines in
petrochemical and refining industries is sometimes a very laborious procedure. The
prediction of fuel properties from composition data is growing in importance in the last few years. Methods of group contribution have been usedin the last decades to predict properties of pure organic compounds and some mix
ture parameters (e.g.,UNIFAC). However, most of the recent studies use artificial neural networks as a technique for prediction for fuel properties using the composition of classes of constituents or key-compounds as input data. The main a
dvantage of a neural network is its capacity to extract general and unknown in
formation for certain series of data (training), supplying useful and fast models for prediction. However, the use of neural networks trained to predict properties of fue
ls produced from one given combination of petroleum fractions can not be suitable
in the prediction of the characteristics of other gasolines produced from other orig
ins due to the complexity and variability of gasoline composition. In this study,
methods of multiple linear regression and artificial neural networks have been eval
uated in the correlation and prediction of gasoline properties from information of
composition obtained by gas chromatography, as well as a methodology for prediction
of properties using a hybrid method composed of neural networks and group contribut
ion. The developed model is evaluated and compared to other methods, revealing
to be sufficiently promising for prediction of properties of pure components and com
plex mixtures. / As gasolinas comerciais são normalmente produzidas a partir de combinações de
frações oriundas da destilação do petróleo ou de outros processos petroquímicos e
de refino e realizadas de modo a atender uma variedade de especificações legais e
ambientais, com o mínimo de custo possível. A qualidade para o uso e comercialização de uma gasolina é avaliada através de cer
tas características especificadas por leis e normas governamentais. Estas caracter
ísticas são normalmente determinadas por diferentes metodologias e técnicas experimentais, haja vista que dependem dos seus constituintes e suas respecti
vas concentrações com uma complexidade bastante elevada, tornando a formulação da gasolina originada em refinarias e petroquímicas, um procedime nto muitas vezes bastante laborioso. O intuito de se predizer propriedades de derivados de petróleo a partir de dados de composição é antigo e vem crescendo em importância nos últimos anos.
Métodos de contribuição de grupos têm sido utilizados ao longo das últimas décadas
para predizer propriedades de compostos orgânicos puros e alguns parâmetros de
misturas (e.g., UNIFAC). Entretanto, a maior parte dos estudos mais recentes utiliza
redes neurais artificiais como técnica para predição de propriedades de combustíveis
usando a composição de grupos de compostos ou mesmo de compo stos-chave como informação de entrada. A principal vantagem de um
a rede neural é sua capacidade de extrair informações gerais e desconhecidas pa
ra certa série de dados (treinamento), fornecendo modelos de predição úteis e
rápidos tanto para sistemas lineares como não-lineares. Porém, dada a complexidade
e variabilidade dos constituintes das gasolinas, a utilização de redes neurais t
reinadas para modelar as propriedades destes combustíveis produzidos a partir de
uma dada combinação de frações petrolíferas pode não se adequar na predição da
s características de gasolinas obtidas a partir de uma outra origem. Neste
estudo, métodos de regressão linear múltipla e redes neurais artificiais foram avali
ados na correlação e predição de
propriedades de gasolinas a partir de informações de com posição obtidas por
cromatografia gasosa, como também foi desenvolvida uma metodologia de predição
de propriedades utilizando um método híbrido de redes neurais e contribuição de grupos. O modelo desenvolvido é avaliado e comparado aos demais, mostrando-se bastante promissor para predição de propriedades de componentes puros e misturas mais complexas.
|
197 |
ARMA-CIGMN : an Incremental Gaussian Mixture Network for time series analysis and forecasting / ARMA-CIGMN : uma rede incremental de mistura gaussiana para análise e previsão de séries temporaisFlores, João Henrique Ferreira January 2015 (has links)
Este trabalho apresenta um novo modelo de redes neurais para análise e previsão de séries temporais: o modelo ARMA-CIGMN (do inglês, Autoregressive Moving Average Classical Incremental Gaussian Mixture Network) além dos resultados obtidos pelo mesmo. Este modelo se baseia em modificações realizadas em uma versão reformulada da IGMN. A IGMN Clássica, CIGMN, é similar à versão original da IGMN, porém baseada em uma abordagem estatística clássica, a qual também é apresentada neste trabalho. As modificações do algoritmo da IGMN foram feitas para melhor adpatação a séries temporais. O modelo ARMA-CIGMN demonstra boa capacidade preditiva e a modelagem ainda pode ser auxiliada por conhecidas ferramentas estatísticas como a função de autorrelação (acf, do original em inglês autocorrelation function) e a de autocorrelação parcial (pacf, do original em inglês partial autocorrelation function), já utilizadas em modelagem de séries temporais e nos modelos da IGMN original. As comparações foram feitas utilizando-se séries conhecidas e dados simulados. Foram selecionados para comparação os modelos estatísticos clássicos ARIMA (do inglês, Autoregressive Integrated Moving Average), a IGMN original e duas modificações feitas ainda na IGMN original:(i) um modelo similar ao modelo ARMA (do inglês, Autoregressive Moving Average) clássico e (ii) um modelo similar ao modelo NOE (do inglês, Nonlinear Output Error). Também é apresentada um versão reformulada da IGMN, usando a abordagem clássica da estatística, necessária para o desenvolvimento do modelo ARMA-CIGMN. / This work presents a new model of neural network for time series analysis and forecasting: the ARMA-CIGMN (Autoregressive Moving Average Classical Incremental Gaussian Mixture Network) model and its analysis. This model is based on modifications made to a reformulated IGMN, the Classical IGMN (CIGMN). The CIGMN is similar to the original IGMN, but based on a classical statistical approach. The modifications to the IGMN algorithm were made to better fit it to time series. The proposed ARMA-CIGMN model demonstrates good forecasts and the modeling procedure can also be aided by known statistical tools as the autocorrelation (acf) and partial autocorrelation functions (pacf), already used in classical statistical time series modeling and also with the original IGMN algorithm models. The ARMA-CIGMN model was evaluated using known series and simulated data. The models used for comparisons were the classical statistical ARIMA model and its variants, the original IGMN and two modifications over the original IGMN: (i) a modification similar to a classical ARMA (Autoregressive Moving Average) model and (ii) a similar NOE (Nonlinear Output Error) model. It is also presented a reformulated IGMN version with a classical statistical approach, which is needed for the ARMA-CIGMN model.
|
198 |
Gerenciamento através de redes neurais artificiais das atividades de produção de reprodutoras pesadas e do frango de corte, de um incubatório e de um abatedouro avícolaSpohr, Augusto January 2011 (has links)
Este estudo utilizou uma série histórica de dados de quatro etapas de uma produção avícola: reprodutoras pesadas, um incubatório, produção de frangos de corte e um abatedouro de frangos de corte pertencente a uma integração avícola do Rio Grande do Sul, no período de junho de 2009 a janeiro de 2010. As linhagens utilizadas foram COBB, ROSS e AVIAN. A diferença entre as médias das variáveis dos dados iniciais e a estatística descritiva foram calculadas com o programa computacional SigmaStat® Statistical Software para Windows 2.03. Foram analizados dados de 27 produtores de matrizes de frango de corte, um incubatório, 147 produtores de frango de corte e um abatedouro onde continham registro de: origem do nascedouro no incubatório, origem da incubadoura no incubatório, quantificação da contaminação por Salmonella sp., Aspergillus sp., Escherichia Coli, Pseudomonas sp. nos nascedouros, número de aviários por incubadoura, ovo de cama/ninho, percentual de linhagem, ovo trincado, minutos de incubação, minutos de nascedouro, horas de estoque, eclosão total, eclosão vendável, ovos incubáveis, aproveitamento de ovos, idade da matriz, perda de peso de ovo, peso de pinto, peso de ovo, contaminação na transferência, tipo de pinto, fertilidade, tipo de máquina, produtor, extensionista, peso do frango de primeira semana, peso do frango de segunda semana, peso do frango de terceira semana, peso do frango de quarta semana, peso do frango de quinta semana, mortalidade do frango na primeira semana, mortalidade do frango na segunda semana, mortalidade do frango na terceira semana, mortalidade do frango na quarta semana, mortalidade do frango na quinta semana, linhagem, condenação total, condenação parcial. As redes neurais foram construídas através do programa computacional NeuroShell®Predictor e NeuroShell®Classifier, desenvolvido pela Ward Systems Group. O programa identificou as variáveis escolhidas como “entradas” para o cálculo do modelo preditivo e variável de “saída” aquela a ser predita. Na primeira parte foram apresentados o treinamento das redes neurais artificiais onde foram utilizadas 50% das linhas de registro de junho de 2009 a janeiro de 2010, utilizou-se todas as variáveis de entrada que antecedem as seguintes variáveis de saída para cada rede: eclosão total, eclosão vendável, fertilidade, mortalidade de 1 semana, mortalidade de 5 semanas, perda de peso de ovo, peso de 5 semanas, tipo de pinto, condenação parcial e condenação total. A segunda parte destinou-se à validação dos modelos, onde se utilizou os outros 50% das linhas de registro com todas as variáveis de entrada que antecedem as mesmas variáveis de saída. Pode-se concluir que as redes neurais artificiais foram capazes de explicar os fenômenos envolvidos entre as quatro etapas da cadeia avícola, matrizes de frango de corte, incubatório, produção de frangos de corte e abatedouro. Esta técnica demonstra cientificamente que se podem criar critérios objetivos, onde estes se tornam uma importante ferramenta nas decisões que serão tomadas pelos gestores destes importantes setores da cadeia avícola. / This study used a historic series of four stages of poultry production: breeders, hatchery, production of broilers and broiler chicken slaughterhouse owned by a poultry integration of Rio Grande do Sul in the period from June 2009 to January 2010. The strains used were COBB, ROSS and AVIAN. The difference between the averages of the initial data and descriptive statistics were calculated with the computer program SigmaStat ® Statistical Software for Windows 2.03. We analyzed data from 27 breeders, 1 hatchery, 147 broiler producers and a slaughterhouse where contained the records of: origin of the hatcher in the hatchery, the origin of incubator in the hatchery, and quantification of Salmonella sp., Aspergillus sp., E. coli, Pseudomonas sp. contamination in hatcher, number of poultry per incubator, egg floor / nest, percentage of lineage, cracked egg, minutes of incubation, the birthplace of minutes, hours in inventory, total hatch, hatching salable, hatching eggs, usable eggs, breeder age, egg weight loss, chick weight, egg weight, contamination in the transfer, type of chick, fertility, machine type, producer, extension workers, the chicken weight of the first week, chicken weight of the second week, chicken weight of the third week, chicken weight of the fourth week, chicken weight of the fifth week, mortality of the chicken in the first week, mortality of chickens in the second week, mortality of the chicken in the third week, mortality of the chicken in the fourth week, mortality of the chicken in the fifth week, lineage, total condemnation, partial condemnation. The neural networks have been built through the computer program NeuroShell Predictor ® and NeuroShell®Classifier, developed by Ward Systems Group. The program identified the variables selected entries as “inputs” for the calculation of the predictive model and the variable “output” those to be predicted. In the first part were presented the training of artificial neural networks were used 50% of the lines of record from June 2009 to January 2010, was used all the input variables that precedes the following output variables for each network: total hatching , salable hatch, fertility, mortality of one week, mortality of five week , egg weight loss, weight of five weeks, type of chick, partial-condemnation and total condemnation. The second part was intended to validate the models, where were used the other 50% of the records lines with all input variables s that precedes the same output variables. It can be concluded that artificial neural networks were able to explain the phenomena involved between the four stages of poultry production, breeders, hatchery, broiler production and slaughterhouse. This technique proves scientifically that we can create objective criteria, and this methodology become an important tool in making decisions taken by managers of these important sectors of the poultry chain.
|
199 |
A Dimensão temporal no projeto de classificadores de padrões para navegação de robôs móveis: um estudo de caso / The temporal dimension in standards classifiers design for mobile robot navigation: a case studyFreire, Ananda Lima 29 September 2009 (has links)
FREIRE, A. L. A Dmensão temporal no projeto de classificadores de padrões para navegação de robôs móveis: um estudo de caso. 167 f. 2009. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2009. / Submitted by Marlene Sousa (mmarlene@ufc.br) on 2016-02-22T18:42:16Z
No. of bitstreams: 1
2009_dis_alf.pdf: 22540747 bytes, checksum: aae0bc4e218c45fd11e8bbd7db517c2d (MD5) / Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2016-02-25T13:44:26Z (GMT) No. of bitstreams: 1
2009_dis_alf.pdf: 22540747 bytes, checksum: aae0bc4e218c45fd11e8bbd7db517c2d (MD5) / Made available in DSpace on 2016-02-25T13:44:26Z (GMT). No. of bitstreams: 1
2009_dis_alf.pdf: 22540747 bytes, checksum: aae0bc4e218c45fd11e8bbd7db517c2d (MD5)
Previous issue date: 2009-09-29 / This work reports results of an investigation on the degree of influence that the inclusion
of short-term memory mechanisms has on the performance of neural classifiers when applied
to robot navigation tasks. In particular, we deal with the well-known strategy of navigating by
“wall-following”. For this purpose, four neural architectures (Logistic Perceptron, Multilayer
Perceptron, Mixture of Experts and Elman network) are used to associate different sensory
input patterns with four predetermined action categories. All stages of the experiments - data
acquisition, selection and training of the architectures in a simulator and their execution on a
real mobile robot - are described. The obtained results suggest that the wall-following task,
formulated as a pattern classification problem, is nonlinearly separable, a result that favors the
MLP network if no memory of input patterns are taken into account. If short-term memory
mechanisms are used, then even a linear network is able to perform the same task successfully. / Este trabalho investiga o grau de influência que a inclusão de mecanismos de memória de
curta duração (MCD) exercem sobre o desempenho de classificadores neurais quando aplicados
em tarefas de navegação de robôs. Em particular, trata da navegação do tipo Wall Following.
Para este fim, quatro conhecidas arquiteturas neurais (Perceptron Logístico, Perceptron Multicamadas,
Mistura de Especialistas e rede de Elman) são usadas com o intuito de associar
diferentes padrões de leituras sensoriais com quatro classes de ações pré-determinadas. Todas
as etapas dos experimentos - aquisição dos dados, seleção e treinamento das arquiteturas em
simulador, além da execução das mesmas em robô móvel real (SCITOS G5) - são descritas em
detalhes. Os resultados obtidos sugerem que a tarefa de seguir paredes, formulada como um
problema de classificação de padrões, é não-linearmente separável, resultado este que favorece
a rede MLP quando os classificadores são treinados sem MCD. Contudo, se mecanismos de
MCD são usados, então até mesmo uma rede linear é capaz de executar a tarefa de interesse
com sucesso.
|
200 |
Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais / Dynamic neural networks for nonlinear tools for time series prediction and modelingMenezes Júnior, José Maria Pires de 14 July 2006 (has links)
MENEZES JÚNIOR, J. M. P. Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais. 2006. 116 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2006. / Submitted by Marlene Sousa (mmarlene@ufc.br) on 2016-04-04T16:59:05Z
No. of bitstreams: 1
2006_dis_jmpmenezesjúnior.pdf: 4137709 bytes, checksum: cdcbd51b8b430a0192d1be9541a4195b (MD5) / Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2016-04-06T14:35:37Z (GMT) No. of bitstreams: 1
2006_dis_jmpmenezesjúnior.pdf: 4137709 bytes, checksum: cdcbd51b8b430a0192d1be9541a4195b (MD5) / Made available in DSpace on 2016-04-06T14:35:37Z (GMT). No. of bitstreams: 1
2006_dis_jmpmenezesjúnior.pdf: 4137709 bytes, checksum: cdcbd51b8b430a0192d1be9541a4195b (MD5)
Previous issue date: 2006-07-14 / In this work, dynamic neural networks are evaluated as non-linear models for efficient prediction of complex time series. Among the evaluated architectures are the FTDNN networks, Elman and NARX. The predictive power of these networks are tested in prediction task a step ahead and multiple-steps-forward. To this end, the following time series are used: Series Laser chaotic Mackey-Glass chaotic series, and network traffic series of computers with self similar characteristics. The use of NARX network prediction time series is a contribution of this thesis. This network has a recurrent neural architecture originally used to identify input-output nonlinear systems. The input NARX network is formed by two sliding windows (sliding window time), one slipping over the other input signal and which slides on the output signal. When applied to chaotic time series prediction, the NARX network is usually designed as an autoregressive nonlinear model (NAR), eliminating the output delay window. In this paper, we propose a simple strategy, but effective to allow the network NARX fully explore the input time slots and output in order to improve its predictive ability. The results show that the proposed approach outperforms the performance presented by predictors based on FTDNN and Elman networks. / Neste trabalho, redes neurais dinâmicas são avaliadas como modelos não-lineares eficientes para predição de séries temporais complexas. Entre as arquiteturas avaliadas estão as redes FTDNN, Elman e NARX. A capacidade preditiva destas redes são testadas em tarefas de predição de um-passo-adiante e múltiplos-passos-adiante. Para este fim, são usadas as seguintes séries temporais: série laser caótico, série caótica Mackey-Glass, além de séries de tráfego de rede de computadores com características auto-similares. O uso da rede NARX em predição de séries temporais é uma contribuição desta dissertação. Esta rede possui uma arquitetura neural recorrente usada originalmente para identificação entrada-saída de sistemas não-lineares. A entrada da rede NARX é formada por duas janelas deslizantes (sliding time window), uma que desliza sobre o sinal de entrada e outra que desliza sobre sinal de saída. Quando aplicada para predição caótica de séries temporais, a rede NARX é projetada geralmente como um modelo autoregressivo nãolinear (NAR), eliminando a janela de atraso da saída. Neste trabalho, é proposta uma estratégia simples, porém eficiente, para permitir que a rede NARX explore inteiramente as janelas de tempo da entrada e da saída, a fim de melhorar sua capacidade preditiva. Os resultados obtidos mostram que a abordagem proposta tem desempenho superior ao desempenho apresentado por preditores baseados nas redes FTDNN e Elman.
|
Page generated in 0.0255 seconds