21 |
Redes neurais artificiais aplicadas ao processamento térmico de alimentos / Artificial neural network aplied to thermal processing of foodGonçalves, Eliane Calomino 25 August 2003 (has links)
Submitted by Reginaldo Soares de Freitas (reginaldo.freitas@ufv.br) on 2016-10-31T16:02:51Z
No. of bitstreams: 1
texto completo.pdf: 565707 bytes, checksum: 6cc31f7355ff0d27f2613e2c173105af (MD5) / Made available in DSpace on 2016-10-31T16:02:51Z (GMT). No. of bitstreams: 1
texto completo.pdf: 565707 bytes, checksum: 6cc31f7355ff0d27f2613e2c173105af (MD5)
Previous issue date: 2003-08-25 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / O presente trabalho teve como objetivo desenvolver um modelo matemático usando a técnica de redes neurais como alternativa potencial aos métodos existentes para o cálculo do processamento térmico de alimentos enlatados. A rede construída teve como variáveis de entrada: o tempo de processo, a temperatura da autoclave e a temperatura do centro do produto para o tempo presente e tempos anteriores. A variável de saída foi a temperatura do ponto frio. Para o treinamento da rede, um conjunto de dados em função das variáveis operacionais tempo e temperatura foi obtido através do processamento do produto em autoclave vertical. A rede selecionada foi a 5-8-9-1, a qual apresentou excelente capacidade de generalização, com um erro relativo médio de 0,022. A precisão e a habilidade do modelo de redes neurais foram comparadas com os métodos de Ball e Stumbo, ambas com respeito ao valor de F do processo, demonstrando a superioridade da técnica de redes neurais. A etapa de resfriamento foi estudada separadamente a partir de uma rede back-propagation desenvolvida com o objetivo de predizer a contribuição do valor de F do processo para diferentes valores de temperatura no centro do produto, no início e no final do resfriamento. A rede construída teve como variáveis de entrada: a temperatura do centro do produto no início do resfriamento, a temperatura da água de resfriamento e a temperatura do ponto frio no final do resfriamento. A variável de saída foi o valor de F. No treinamento da rede foi usado o mesmo conjunto de dados em função das variáveis operacionais tempo e temperatura obtido em autoclave vertical. A rede selecionada para a etapa de resfriamento foi a rede (5-14-10-1) e apresentou excelente capacidade de generalização, com um erro relativo médio de 0,706. Redes neurais apresentaram grande capacidade para a modelagem do processamento térmico de alimentos quando analisado o processo completo e a etapa de resfriamento em separado, predizendo acertadamente as novas temperaturas do produto e os novos valores de F, respectivamente. Sendo então demonstrada precisão, simplicidade e compatibilidade on line. / The present work had as objective to develop a mathematical model using the technique of neural networks as potential alternative to the existent methods for the calculation of the thermal processing of canned food in order to determine the temperature of the cold point of the product starting from the initial conditions of the process and of the temperature of the autoclave. The built network had as input variables: the time of process, the temperature of the autoclave and the temperature of the center of the product for the time present and previous times. The output variable went to temperature in the center of the product in the time. For the training of the network, a group of data in function of the variables operational time and temperature was obtained through the processing of the product in vertical autoclave. The selected network went to network (5-8-9-1), which presented excellent generalization capacity, with a mean relative error of 0,022. The precision and ability of the model of neural networks were compared with the methods of Ball and Stumbo, both with regard to the value of F of the process, demonstrating the superiority of the technique of neural networks. The cooling stage was studied separately starting from a network back- propagation developed with the objective of predicting the contribution of the value of F of the process for different temperature values in the center of the product in the beginning and in the end of the cooling. The built network had as input variables: the temperature of the center of the product in the beginning of the cooling, the temperature of the cooling water and the temperature of the center of the product in the end of the cooling. The output variable was the value of F. In the training of the network the same group of data was used in function of the variables operational time and temperature obtained in vertical autoclave. The network selected for the cooling stage went to network (5-14-10-1) and it presented excellent generalization capacity, with a mean relative error of 0,706. Neural networks presented great capacity for the modeling of the thermal processing of food when analyzed the complete process and the cooling stage in separate predicting the new temperatures of the product and the new values of F wisely, respectively. Being demonstrated precision, simplicity and on line compatibility.
|
22 |
Influência do preenchimento de falhas de dados horários de precipitação por redes neurais artificiais (RNAs) na simulação hidrológica de base física em uma bacia ruralDepiné, Haline January 2014 (has links)
A disponibilidade de séries contínuas de chuva pode viabilizar a execução de muitos estudos que não seriam possíveis com séries que apresentam falhas, pois muitos modelos hidrológicos não apresentam bons resultados quando utilizados dados de entrada com valores faltantes. Neste estudo, as capacidades de Redes Neurais Artificiais (RNAs) foram analisadas para estimar falta de dados das estações pluviométricas. Assim, o objetivo deste trabalho consistiu em testar a utilização de séries pluviométricas preenchidas, em escala horária, a partir de redes neurais artificiais como entrada em um modelo hidrológico de base física, com parâmetros distribuídos. A hipótese levantada neste estudo é que o preenchimento de falhas de séries históricas de precipitação com as Redes Neurais Artificiais potencializam a sua utilização em estudos e na modelização hidrológica. Na metodologia foi proposto um método para preenchimento de falhas dos dados históricos de precipitação horária monitorados em dezoito postos pluviométricos. Posteriormente os dados de precipitação preenchidos foram aplicados em um modelo de previsão de vazão (SWAT). Foram simuladas sete situações para a verificação do desempenho do modelo SWAT, utilizando dados de entrada horários preenchidos de 16 postos pluviométricos, posteriormente, as séries de entrada foram sendo reduzidas, para 8 postos, 4, 2 e por fim 1 posto pluviométrico. Também foi simulado um cenário onde se utilizou como dados de entrada as 16 séries de dados horários sem preenchimento, e um cenário onde os dados horários preenchidos foram convertidos em diários. Foram construídos 1784 modelos para preenchimento de falhas nas séries de dados horários dos postos pluviométricos da bacia. O preenchimento das falhas apresentou coeficientes de analise de desempenho dos modelos elevados. De maneira geral, os valores do coeficiente de Nash-Sutcliffe (NS) encontrados no treinamento e na verificação das redes variaram de 0,80 a 0,99. A frequência com que foram encontrados valores de NS menores que 0.90 nos preenchimentos dos pluviógrafos foi baixa, da ordem de 3,6%. Na aplicação do modelo SWAT, a calibração e a verificação dos parâmetros do modelo foram realizadas com o uso das 16 séries horárias preenchidas com as RNAs. Resultados demonstraram que o coeficiente de eficiência de NS diminui à medida que quantidade de estações pluviométricas utilizadas na entrada do modelo são reduzidas, de 16 para 8, de 8 para 4, de 4 para 2 e de 2 para 1. Variaram de NS = 0,86 (com 16 pluviógrafos) a NS = 0,75 (com dois e um pluviógrafos). Ao se utilizar os dados sem preenchimento o modelo obteve um desempenho inferior, alcançando um coeficiente de NS 6 igual a 0,69. Com relação ao último cenário, em que os dados horários preenchidos foram acumulados e convertidos em diários para serem inseridos no modelo, os resultados foram os piores obtidos, o NS se igualou a 0,61. Nota-se que o preenchimento das falhas das precipitações horárias proporcionou a maximização dos dados disponíveis, com representação das variabilidades espaciais e, a realização de simulações para intervalos de tempo compatíveis com o tempo de resposta da bacia. / The availability of continuous rainfall series can enable the execution of many studies that are not possible with failed series, because many hydrological models do not provide good results when used input data with missing values. In this study, the capabilities of Artificial Neural Networks (ANN) were analyzed to estimate missing data rainfall stations. The aim of this study was to test the use of filled rainfall series as an hourly scale, as of artificial neural networks as input to a hydrological model physical basis, with distributed parameters. The hypothesis in this study is that the filling of historic precipitation series faults with the Artificial Neural Networks maximizes its use in studies and hydrological modeling. The methodology has been proposed a method for gap filling of the historical data of hourly rainfall monitored in eighteen rain gauges. Subsequently the completed precipitation data were applied in a flow forecasting model (SWAT). Seven situations were simulated to verify the efficiency of the SWAT model, a scenario with input time of 16 rain gauges with gap filling using RNAs, subsequently the input series were being reduced to 8 stations, 4, 2 and finally 1 rain gauges data filled. Was also simulated a scenario in which were used as input hourly data series of 16 unfilled posts, and a scenario with daily data entry was also simulated, where the hourly data filled of 16 stations were converted to daily data. 1784 models were constructed to fill gaps in the hourly data series of rain gauges in the basin. The gaps filling in hourly precipitation showed high efficiency coefficients of models. In general, coefficient of Nash-Sutcliffe (NS) values found during the training and verification networks ranged from 0.80 to 0.99. The frequency with which NS values smaller than 0.90 were found in the fill of the rain gauge was 3.6%. Based on the rainfall filled series, these were tested for their efficiency in the hydrologic simulation process, using the physically based SWAT model. The calibration and verification of the model parameters were performed using 16 pluviograph stations with hourly series filled with RNAs. Results showed that the efficiency coefficients of NS decreases as the amount of rainfall stations used in the input model are reduced from 16 to 8, from 8 to 4, 4 to 2 and 2 to 1. Ranged from NS = 086 (16 pluviographs) NS = 0.75 (with two one pluviographs). When using the not filling data, the model obtained a lower performance, achieving a 8 coefficient NS equal to 0.69. On respect to the latter scenario, in which hourly data were accumulated and converted filled in daily to be inserted in the model, the worst results were obtained, the NS equaled 0.61. It is noticed in this way, that the filling gaps of hourly rainfall provided the maximization of available data, with representation of spatial variability and, performing simulations to intervals compatible with the response time of the basin.
|
23 |
Utilização de redes neurais artificiais para avaliar o efeito da tensão média na fadiga do cabo CAL 1055 MCMPestana, Miélle Silva 18 December 2017 (has links)
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2017. / Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2018-04-16T17:06:45Z
No. of bitstreams: 1
2017_MiélleSilvaPestana.pdf: 5296578 bytes, checksum: 42ed0dca368e0d27549f10739c56bbba (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-04-25T21:05:13Z (GMT) No. of bitstreams: 1
2017_MiélleSilvaPestana.pdf: 5296578 bytes, checksum: 42ed0dca368e0d27549f10739c56bbba (MD5) / Made available in DSpace on 2018-04-25T21:05:13Z (GMT). No. of bitstreams: 1
2017_MiélleSilvaPestana.pdf: 5296578 bytes, checksum: 42ed0dca368e0d27549f10739c56bbba (MD5)
Previous issue date: 2018-04-25 / Linhas de transmissão de energia têm sido construídas utilizando diversos níveis de carga de pré-esticamento. Para estimar a vida remanescente destas linhas, a CIGRE propôs uma metodologia de cálculo que requer não apenas a medição dos níveis reais de vibração do cabo, mas também sua curva Wöhler ou S-N extraída em laboratório sob o mesmo nível de tensão média aplicada no ensaio. No entanto, como estes ensaios são longos e requerem o uso de laboratórios sofisticados, o desenvolvimento de um modelo técnico capaz de estimar a curva S-N do cabo condutor para determinado nível de tensão média é extremamente desejável. Neste sentido, este trabalho consiste na utilização de um modelo de inteligência artificial conhecido como Redes Neurais Artificiais (RNA) para modelar o efeito da tensão média de tração sobre a resistência em fadiga do cabo condutor CAL 1055 MCM. Para isso, foram levantadas as curvas de Wöhler ou S-N de determinada montagem cabo/grampo de suspensão. Foram realizados 27 ensaios de fadiga submetidos a cargas de esticamento referentes à carga média diária de tração, conhecida como EDS (Every Day Stress) de 17%; 20% e 25,6% da carga de ruptura (RTS) do condutor. Os ensaios foram conduzidos de acordo com as recomendações da CIGRE (1985), EPRI (1979) e IEEE (1978), em uma bancada de 46 m de comprimento. As curvas S-N obtidas podem ser utilizadas para construir diagramas de vida constante. No entanto, para isso seria necessário à execução de um grande número de ensaios experimentais, o que encareceria a análise. Assim, uma forma de diminuir custos envolvidos em procedimentos experimentais é utilizar a RNA na construção destes diagramas. Em uma primeira análise deste trabalho, foram utilizados dados disponíveis na literatura para o condutor Ibis (cabo de alumínio com alma de aço) obtidos por Fadel et al., (2012), para fazer uma avaliação preliminar da eficiência da RNA. Em uma segunda investigação, conforme objetivo principal deste trabalho, utilizou-se os dados experimentais do condutor CAL 1055 MCM (cabo liga alumínio) para construir diagramas de vida constante (105, 106, 107ciclos). A partir dos resultados alcançados para ambos os condutores, percebeu-se que a RNA treinada com poucas curvas S-N produziram resultados bastante satisfatórios. / Power transmission lines have been constructed using several levels of stretching loads. To estimate the remaining life of these lines, CIGRÉ proposed a calculation methodology that requires the measurement of actual vibration levels of the conductor and its Wöhler or S-N curve, drawn in the laboratory for equal mean stress levels. As these tests are long and require the use of sophisticated laboratories, the development of a technical model capable of estimating the S-N curve of the conductor cable for a given level of mean stress is extremely desirable. In this sense, this work consists in the use of an artificial intelligence model, called Artificial Neural Networks (ANN), to model the effect of the mean stress on the fatigue resistance of the conductor cable AAAC 1055 MCM. 27 fatigue tests were carried out for different Every Day Stress levels: 17%, 20% and 25% of the conductor rate tensile strength (RTS). The tests were set up in the laboratory on a 46 m span according to CIGRÉ (1985), EPRI (1979) and IEEE (1978) recommendations. The S-N curves obtained in the laboratory can be used to construct the constant life diagrams. Although, it is necessary to have a large number of expensive tests in order to realize a reliable fatigue strength analysis. One possible solution to minimize the high costs of experimental tests is the use of ANN on the construction of constant life diagrams. On the first stage of this work, experimental data of the conductor Ibis (obtained by Fadel et al., 2012) were used for preliminaries analysis of ANN efficiency. In a second investigation, according to the main objective of this work, experimental data of the conductor AAAC 1055 MCM (aluminum alloy cable) was used to construct constant life diagrams (105, 106, 107 cycles). From the results obtained for both conductors, it was noticed that trained ANN with few S-N curves produced quite satisfactory results.
|
24 |
Detecção de dano estrutural em estruturas planas utilizando redes neurais / Structural damage detection in plane structures using neural networksMaia, Renato Abreu 09 December 2016 (has links)
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2017-03-23T20:07:15Z
No. of bitstreams: 1
2016_RenatoAbreuMaia.pdf: 3300148 bytes, checksum: 7ca98a4c224cbc59743ee2d0c0e212fd (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2017-04-07T16:40:42Z (GMT) No. of bitstreams: 1
2016_RenatoAbreuMaia.pdf: 3300148 bytes, checksum: 7ca98a4c224cbc59743ee2d0c0e212fd (MD5) / Made available in DSpace on 2017-04-07T16:40:42Z (GMT). No. of bitstreams: 1
2016_RenatoAbreuMaia.pdf: 3300148 bytes, checksum: 7ca98a4c224cbc59743ee2d0c0e212fd (MD5) / Conforme as tecnologias de projeto e construção avançam, as estruturas tendem a surgir cada vez mais esbeltas, o que as torna mais vulneráveis a vibrações excessivas. Aliado a isso, a possível degradação estrutural de construções antigas tem gerado um crescimento no desenvolvimento e aprimoramento de técnicas de monitoramento de integridade estrutural, em especial ferramentas que fazem uso das propriedades dinâmicas das estruturas (frequências naturais e modos de vibração), visto que estas sofrem alterações quando há mudanças nas propriedades físicas da estrutura. Neste sentido, métodos capazes de identificar alterações nas propriedades dinâmicas e utilizá-las para localizar e quantificar possíveis danos estruturais tornam-se de suma importância para o bom funcionamento de um sistema de monitoramento de integridade estrutural, como é o caso da técnica de Redes Neurais Artificiais (RNAs). Esta é uma técnica matemática que, quando utilizada juntamente com as características dinâmicas, mostra-se capaz de indicar até as menores alterações na integridade de elementos estruturais. Neste contexto, várias RNAs com o algoritmo backpropagation foram testadas utilizando as características dinâmicas obtidas numericamente e experimentalmente de uma viga e três pórticos planos. Tendo em vista as etapas necessárias para o bom funcionamento de uma RNA, para a fase de treinamento foram criados modelos numéricos das estruturas estudadas e suas propriedades dinâmicas foram utilizadas como entrada das redes. Já para a fase de teste, foram utilizados dados provenientes tanto de modelos numéricos quanto de estruturas ensaiadas experimentalmente. Após o processamento, os resultados foram analisados criticamente, permitindo uma avaliação do desempenho das RNAs no que diz respeito à detecção de danos estruturais. / As design and construction technologies advance, structures tend to appear more slender, making them more vulnerable to excessive vibration. In addition, the possible structural degradation of old constructions has generated a growth in the development and improvement of structural health monitoring techniques, especially tools that make use of the dynamic properties of the structures (natural frequencies and mode shapes). In this sense, methods capable of identifying changes in the dynamic properties and using them to locate and quantify possible structural damages are essential for the proper functioning of a monitoring system, such as the Artificial Neural Networks (ANNs) technique. This is a mathematical technique that, when used together with the dynamic characteristics, shows itself capable of indicating even the smallest changes in the integrity of structural elements. In this context, several RNAs with the backpropagation algorithm were tested using the dynamical characteristics obtained numerically and experimentally from one beam and three plane frames. Considering the steps necessary for the proper functioning of an ANN, for the training phase, numerical models of the studied structures were created and their dynamic properties were used as inputs to the networks. For the test phase, data from both numerical models and experimentally tested structures were used. After processing the data, the results were analyzed critically, allowing an evaluation of the RNAs performance in order to detect structural damages.
|
25 |
Estabelecimento de um novo índice de patogenicidade para amostras de E. coli e o uso de redes neurais artificiaisSouza, Guilherme Fonseca de January 2010 (has links)
A colibacilose é a denominação comum a diferentes lesões locais ou sistêmicas causadas pela bactéria E.coli com propriedades patogênicas . Essas lesões são conhecidas como a principal causa infecciosa de condenação de carcaças. No Brasil, entre 2001 e 2005, essa condenação gerou um prejuízo estimado em US 58 milhões à avicultura . Deste total, 19 milhões podem ser creditados à presença de lesões cutâneas de celulite e 39 milhões a lesões sistêmicas. A E.coli é o principal habitante do trato gastrintestinal de mamíferos e de aves. Nos aviários, é possível encontrar 106 UFC/grama de fezes, tornando praticamente impossível a eliminação deste agente no ambiente. A dificuldade que envolve a E.coli está na classificação desta como patogênica, haja vista que a diferenciação entre cepas virulentas e avirulentas continua sendo um problema após o diagnóstico bacteriológico. A biologia molecular vem auxiliando no maior entendimento dos mecanismos de patogenicidade das E. coli e cada vez mais, é demonstrada a grande importância da interação dos diversos fatores de virulência na determinação da patogenicidade. Este trabalho tem como objetivo gerar novos elementos para o maior entendimento da patogenicidade da E.coli, traçando uma nova metodologia de classificação, através de um índice no qual, além do número de animais mortos, também se consideraram o tempo de morte e a capacidade da cepa causar lesão compatível à colibacilose em pintos de 1 dia. Observou-se diferença significativa entre amostras oriundas de celulite e quadro respiratório em relação a amostras oriundas de cama no método proposto, além do fato de também existir a mesma relação entre o tipo e a quantidade de lesões formadas, conforme a origem do isolado. Obteve-se, ainda, um banco de dados gerado a partir desse primeiro experimento, que permitiu o uso de Redes Neurais Artificiais na construção de modelos que simulavam esse mesmo teste de patogenicidade, sem o uso de animais, adotando como informações de entrada alguns dos principais fatores de virulência associados a amostras patogênicas, origem das amostras e o índice de patogenicidade obtidos. Os resultados quanto às predições corretas foram em torno de 80,00%, permitindo concluir que as redes podem ser uma alternativa para substituir testes de patogenicidade in vivo na classificação de amostras de E.coli de origem aviária. / The colibacillosis is the common denomination for different local or systemic lesions caused by E. coli bacteria with pathogenic properties. These lesions are known as the leading infectious cause of condemnation of carcasses. In Brazil, between 2001 and 2005, that disease led to a loss estimated at 58 million for poultry. Of this total, 19 million can be credited to the presence of cutaneous lesions of cellulitis and 39 million to other organs. E. coli is the main habitant of the gastrointestinal tract of mammals and birds. In the aviaries, you can find 106 CFU / gram of feces, making it virtually impossible to eliminate this agent in the environment. The difficulty surrounding the E. coli in this classification as pathogenic, given that the differentiation between virulent and avirulent strains remains a problem after the bacteriological diagnosis. Molecular biology has helped in better understanding the mechanisms of pathogenicity of E. coli and, increasingly, it demonstrated the great importance of the interaction of different virulence factors in determining the pathogenicity. This work aims to generate new elements for better understanding the pathogenicity of E. coli, marking a new classification methodology, through an index in which, besides the number of dead animals are often considered the time of death and the capacity of strains cause lesions compatible with colibacillosis in chicks of 1 day old. There was significant difference between samples from cellulitis and respiratory symptoms compared to samples from litter in the proposed method, besides the fact that there is also the same relationship between the type and number of lesions formed depending on the origin of the isolate. We obtained also a database generated from this first experiment, which allowed the use of Artificial Neural Networks in the construction of models that simulated the same pathogenicity test, without the use of animals, taking as input information some main virulence factors associated with pathogenic samples, origin of samples and pathogenicity index obtained. The results regarding the predictions have been around 80.00%. These results show that neural networks can be an alternative to replace pathogenicity tests in vivo in the classification of samples of E. coli of avian origin.
|
26 |
Utilização de inteligência artificial (redes neurais artificiais) no gerenciamento de reprodutoras pesadas.Guahyba, Adriano da Silva January 2001 (has links)
Uma atividade com a magnitude da avicultura, que usa equipamentos de última geração e serviços atualizados, é levada, na maioria dos casos, a tomar decisões que envolvem todos aspectos de produção, apoiada em critérios subjetivos. A presente tese objetivou estudar a utilização das redes neurais artificiais na estimação dos parâmetros de desempenho de matrizes pesadas, pertencentes a uma integração avícola sul-brasileira. Foram utilizados os registros de 11 lotes em recria, do período compreendido entre 09/11/97 a 10/01/99 e de 21 lotes em produção, do período compreendido entre 26/04/98 a 19/12/99, para a análise por redes neurais artificiais. Os dados utilizados corresponderam a 273 linhas de registros semanais, do período de recria e 689 linhas de registros semanais, do período de produção. Os modelos de redes neurais foram comparados e selecionados como melhores, baseados no coeficiente de determinação múltipla (R2), Quadrado Médio do Erro (QME), bem como pela análise de gráficos, plotando a predição da rede versus a predição menos o real (resíduo). Com esta tese foi possível explicar os parâmetros de desempenho de matrizes pesadas, através da utilização de redes neurais artificiais. A técnica permite a tomada de decisões por parte do corpo técnico, baseadas em critérios objetivos obtidos cientificamente. Além disso, este método permite simulações das conseqüências de tais decisões e fornece a percentagem de contribuição de cada variável no fenômeno em estudo.
|
27 |
Fatores intervenientes na capacidade de atendimento de praças de pedágioOliveira, Marcelo Leismann de January 2004 (has links)
Este trabalho tem como objetivo o levantamento e análise de fatores intervenientes na capacidade de processamento de veículos em cabines de praças de pedágio com o recolhimento manual de tarifas. Buscando o entendimento de como estes fatores interferem nos tempos de atendimento nas cabines foi realizada uma análise estatística e posterior modelagem, que utilizou redes neurais artificiais. Redes neurais artificiais são úteis no entendimento de problemas com alto grau de complexidade, que agregam diversas variáveis de entrada com relações não-lineares entre si. As variáveis de entrada escolhidas para a modelagem foram forma de pagamento, intensidade de fluxo, valor das tarifas e classes de veículos. A variável de saída foi o tempo de atendimento nas cabines de cobrança de pedágios. Foram obtidos três modelos que buscaram refletir a variação dos tempos de atendimento para um mesmo conjunto de dados de entrada: Modelo de Tempos Mínimos de Atendimento; Modelo de 85° Percentil de Tempos de Atendimento, e; Modelo de Tempos Máximos de Atendimento. As análises de sensibilidade dos modelos indicaram que tempos de atendimento são fortemente influenciados pelo fluxo de veículos nas praças. Quanto mais intenso o fluxo de veículos, tempos mínimos de atendimento tendem a sofrer leve aumento, indicando pequena perda de rendimento do processo. Perda de rendimento pode ser resultado de (i) necessidade de digitação das placas de licença dos veículos no sistema operacional das praças-dificuldade de visualização das mesmas em situação de filas, e (ii) desgaste físico dos arrecadadores. O desgaste físico dos arrecadadores também se apresenta como provável causa para o aumento de tempos mínimos de atendimento para fluxos altos. Quanto mais intenso o fluxo de veículos, menores são os tempos máximos de atendimento. Quanto maior o fluxo de veículos nas praças, as modelagens indicam uma maior estabilidade do sistema com relação ao processamento de veículos.
|
28 |
Análise do padrão de comportamento de pedestres em travessias semaforizadasAriotti, Paula January 2006 (has links)
Esta dissertação apresenta um modelo conceitual do padrão de comportamento de pedestres em travessias semaforizadas. O modelo propõe uma estrutura de classificação dos pedestres de acordo com suas atitudes ao atravessar uma via. A análise envolve a consideração de fatores que podem influenciar as decisões dos pedestres sobre onde e quando iniciar a trajetória de travessia. O uso adequado das travessias semaforizadas é definido como conformidade de travessia. A conformidade de travessia pode ser de dois tipos: espacial, relacionada à localização em que o pedestre atravessa a via e, temporal, relacionada ao momento em que o pedestre decide iniciar a travessia. O modelo conceitual foi aplicado na área central da cidade de Porto Alegre. Com o objetivo de estimar as conformidades de travessia foram realizadas modelagens com redes neurais artificiais. Esta ferramenta proporciona o entendimento de problemas com alto grau de complexidade, que agregam variáveis com relações não-lineares entre si. As variáveis utilizadas na modelagem foram (i) gap máximo, (ii) gap crítico, (iii) 85° percentil de gaps, (iv) volume de pedestres, (v) volume de veículos, (vi) velocidade de veículos, (vii) largura da via, (viii) largura da travessia e, (ix) tempo de espera pelo verde no semáforo. Os resultados demonstraram que as características particulares de cada local têm influência nas conformidades de travessia. As análises de sensibilidade dos modelos indicaram que as variáveis relacionadas às características locais de geometria e condições de entorno das travessias exercem maior influência sobre a conformidade de travessia espacial. Por outro lado, a modelagem indicou que as características do regime do tráfego são os aspectos mais importantes na determinação da conformidade de travessia temporal.
|
29 |
Utilização de inteligência artitificail (redes neurais artificiais) no gerenciamento do incubatório de uma empresa avícola do sul do Brasil.Salle, Felipe de Oliveira January 2005 (has links)
O estudo foi feito através de séries históricas de dados de um incubatório pertencente a uma integração avícola do Rio Grande do Sul, durante os anos de 1999 a 2003, com os quais foram feitas análises do tipo observacional analítico e transversal. Primeiramente usou-se os registros de 5 linhagens de frangos utilizadas pela empresa no transcorrer do período de 23 de fevereiro de 1995 a 25 de janeiro de 2002. As linhagens foram identificadas da seguinte forma: COBB, HIGH YIELD, MPK, ROSS308, e X. Esses 81 lotes analisados foram estudados através dos seus respectivos registros que continham: o número inicial de fêmeas, número inicial de machos, ração total/cabeça, ração/cabeça/inicial/recria, ração/cabeça/inicial/postura, ovos postos, ração p/ovo posto, pintos nascidos, percentagem viabilidade postura fêmea, percentagem viabilidade postura machos. O método aqui proposto provou ser capaz de classificar as linhagens a partir das entradas escolhidas. Na linhagem que apresentava uma grande quantidade de amostras a classificação foi muito precisa. Nas demais, com menor número de dados, a classificação foi efetuada, e, como era de se esperar, os resultados foram menos consistentes. Com o mesmo banco de dados dos lotes fechados, realizou-se a segunda etapa da dissertação. Nela, procedeu-se o treinamento das redes neurais artificiais onde foram utilizadas as seguintes variáveis de saída: ovos incubáveis, percentagem de ovos incubáveis, ovos incubados, percentagem de ovos incubados, pintos nascidos e pintos aproveitáveis. Os resultados apresentaram R2 oscilando entre 0,93 e 0,99 e o erro médio e o quadrado médio do erro ajustados, demonstrando a utilidade das redes para explicar as variáveis de saída. Na terceira e última etapa da dissertação, destinada à validação dos modelos, foram usados quatro arquivos distintos denominados da seguinte forma: INPESO (3.110 linhas de registros de pesos dos reprodutores), ININFO (56.018 linhas de registros com as informações diárias do ocorrido nas granjas de reprodução até o incubatório), INOVOS (35.000 linhas de registros com informações sobre os ovos processados), INNASC: 43.828 linhas de registros com informações sobre os nascimentos. O modelo gerado para o ano de 1999 foi capaz de predizer corretamente os resultados deste mesmo ano e dos anos de 2000, 2001, 2002 e 2003. O mesmo procedimento foi repetido criando modelo com os registros do ano em questão e validando-o com os registros dos anos subseqüentes. Em todas as ocasiões foram obtidos bons resultados traduzidos por um alto valor no R2. Concluindo, os fenômenos próprios do incubatório puderam ser explicados através das redes neurais artificiais. A técnica, seguindo a mesma tendência das dissertações que anteriormente já haviam demonstrado que esta metodologia pode ser utilizada para o gerenciamento de reprodutoras pesadas e de frangos de corte, pode realizar simulações, predições e medir a contribuição de cada variável no fenômeno observado, tornando-se uma poderosa ferramenta para o gerenciamento do incubatório e num suporte cientificamente alicerçado para a tomada de decisão.
|
30 |
Utilização de inteligência artificial - (Redes neurais artificiais) no gerenciamento da produção de frangos de corteReali, Egidio Henrique January 2004 (has links)
Este estudo objetivou demonstrar que é possível explicar os fenômenos que ocorrem na criação de frangos de corte através de redes neurais artificiais. A estatística descritiva e a diferença entre as médias das variáveis dos dados iniciais foram calculadas com o programa computacional SigmaStat® Statistical Software para Windows 2.03. Foi utilizada uma série histórica de dados de produção de frangos de corte, obtidos nos anos de 2001 e 2002, fornecidos por uma Integração Avícola do Rio Grande do Sul, contendo informações de 1.516 criadores com lotes alojados em 2001 e 889 criadores com lotes alojados em 2002. Nos arquivos estavam registrados, para cada lote, suas variáveis de produção, tais como número do lote, data do alojamento, data do abate, idade ao abate, número de pintos alojados, quilogramas de ração consumidos, quilogramas de frangos produzidos, número de aves abatidas, custo do frango produzido, mortalidade, peso médio, ganho de peso diário, índice de conversão alimentar, índice de eficiência, quilogramas líquido de frangos, quilogramas de ração inicial, quilogramas de ração crescimento, quilogramas de ração abate, além de outros. Para a construção das redes neurais artificiais foi utilizado o programa computacional NeuroShell®Predictor, desenvolvido pela Ward Systems Group. Ao programa foi identificado as variáveis escolhidas como “entradas” para o cálculo do modelo preditivo e a variável de “saída” aquela a ser predita. Para o treinamento das redes foram usados 1.000 criadores do banco de dados do alojamento de frangos de corte de 2001. Os restantes 516 criadores de 2001 e todos os 889 criadores de 2002 serviram para a validação das predições, os quais não participaram da etapa de aprendizagem, sendo totalmente desconhecidos pelo programa. Foram gerados 20 modelos na fase de treinamento das redes neurais artificiais, com distintos parâmetros de produção ou variáveis (saídas). Em todos estes modelos, as redes neurais artificiais geradas foram bem ajustadas apresentando sempre, um Coeficiente de Determinação Múltipla (R²) elevado e o menor Quadrado Médio do Erro (QME). Ressalta-se que o R² perfeito é 1 e um coeficiente muito bom deve estar próximo de 1. Todos os 20 modelos, quando validados com os 516 lotes de 2001 e com 889 de 2002, apresentaram também Coeficientes de Determinação Múltipla (R²) elevados e muito próximos de 1, além de apresentarem o Quadrado Médio do Erro (QME) e Erro Médio reduzidos. Foi comprovado não haver diferenças significativas entre as médias dos valores preditos e as médias dos valores reais, em todas as validações efetuadas nos lotes abatidos em 2001 e em 2002, quando aplicados os 20 modelos de redes neurais gerados. Como conclusão, as redes neurais artificiais foram capazes de explicar os fenômenos envolvidos com a produção industrial de frangos de corte. A técnica oferece critérios objetivos, gerados cientificamente, que embasarão as decisões dos responsáveis pela produção industrial de frangos de corte.Também permite realizar simulações e medir a contribuição de cada variável no fenômeno em estudo.
|
Page generated in 0.0221 seconds