• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 7
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 27
  • 17
  • 16
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Safety Assessment Of R/c Columns Against Explosive Attacks By Vehicle Or Human From Exterior

Altunlu, Kartal 01 February 2008 (has links) (PDF)
Reinforced concrete structures may be subjected to blast loads together with static loads during their service life. Important buildings may be attacked by using explosives as a part of increasing global terrorist activities. Evaluation of blast phenomena for economically and strategically significant buildings is especially important, in order to analyze and design their structural members subjected to air blast loading. Understanding nature of explosions, which are loading characteristics and relation to selected parameters such as explosive type, quantity, and distance, were studied in this thesis. Earlier studies found in the literature survey on explosives, blast, and behavior of structural elements were investigated. Behavior of structures under blast load was described in terms of pressure magnitude, distribution, and reflection phenomena. Simple design, assessment guidelines, and useful charts were developed. A computer program was generated using MATLAB programming language, which automatically generates the air blast pressure versus time data resulting from an air explosion in addition to finite element model formation and dynamic time stepping analysis of a reinforced concrete column. The shear and moment capacities can be calculated and compared against dynamically calculated demand under known axial column force / therefore, vulnerability of a column under blast loading is evaluated. The results of the numerical analyses indicated that failure mechanism of columns is mostly shear failure instead of moment (i.e., plastic hinge and mechanism formation).
2

Evaluation Of Performance Based Displacement Limits For Reinforced Concrete Columns Under Flexure

Solmaz, Taylan 01 September 2010 (has links) (PDF)
Reinforced concrete frame buildings are the most common type of constructions in Turkey which are exposed to various types of forces during their lifetime. Seismic performance of reinforced concrete frame buildings is dominated by columns which can be classified as primary members of these structures. When current codes are considered, all of them contain several provisions in order to implement reliable seismic performances of reinforced concrete columns. In order to evaluate the accuracy of these provisions, analytical and parametric studies are carried out for flexure critical reinforced concrete columns. In these studies, total numbers of 30 flexure critical columns are extracted from PEER database (2005) and analytically investigated. Once the seismic responses obtained from analytical investigations are close enough to experimental seismic responses, performance based displacement limits are pointed out according to TEC (2007), FEMA 356 (2000), Eurocode 8 (2003), and ASCE/SEI 41 Update (2009). In addition to this, total numbers of 144 flexure critical columns are generated in parametric studies to present the effects of various parameters such as column geometry, concrete strength, axial load ratio, transverse reinforcement ratio, and yielding strength of longitudinal reinforcement on performance based displacement limits. Performance based displacement limits proposed by TEC (2007), FEMA 356 (2000), Eurocode 8 (2003), and ASCE/SEI 41 Update (2009) are found very conservative compared to limits obtained from both experimental and analytical behavior. On the other hand, performance based displacement limits given in Eurocode 8 (2003) and ASCE/SEI 41 Update (2009) predict the experimental behavior more accurate than TEC (2007) and FEMA 356 (2000). Improvements on these limits are proposed.
3

Effect of load pattern and history on performance of reinforced concrete columns

Shirmohammadi, Fatemeh January 1900 (has links)
Doctor of Philosophy / Civil Engineering / Asadollah Esmaeily / Accurate and realistic assessment of the performance of columns in general, and those in critical locations that may cause progressive failure of the entire structure, in particular, is significantly important. This performance is affected by the load history, pattern, and intensity. Current design code does not consider the effect of load pattern on the load and displacement capacity of columns. A primary research sponsored by Kansas Department of Transportation (KDOT) was conducted as the initial step of the present study (No. K-TRAN: KSU-11-5). The main goals of the KDOT project were: (1) investigation of new KDOT requirements in terms of the column design procedure and detailing and their consistency with AASHTO provisions; (2) verification of the KDOT assumptions for the plastic hinge regions for columns and bridge piers, (3) provide assessment of the load capacity of the existing columns and bridge piers in the light of the new specifications and using the new load demand as in the new provisions; and finally recommendations for columns and bridge piers that do not meet the new requirements. A conclusion was drawn that there is a need for conducting more studies on the realistic performance of Reinforced Concrete (RC) sections and columns. The studies should have included performance of RC members under various loading scenarios, assessment of columns capacity considering confinement effect provided by lateral reinforcement, and investigation on performance of various monotonic and cyclic material models applied to simulate the realistic performance. In the study reported here, monotonic material models, cyclic rules, and plastic hinge models have been utilized in a fiber-based analytical procedure, and validated against experimental data to simulate behavior of RC section under various loading scenarios. Comparison of the analytical predictions and experimental data, through moment–curvature and force–deflection analyses, confirmed the accuracy and validity of the analytical algorithm and models. The performance of RC columns under various axial and lateral loading patterns was assessed in terms of flexural strength and energy dissipation. FRP application to enhance ductility, flexural strength, and shear capacity of existing deficient concrete structures has increased during the last two decades. Therefore, various aspects of FRP-confined concrete members, specifically monotonic and cyclic behavior of concrete members confined and reinforced by FRP, have been studied in many research programs, suggesting various monotonic models for concrete confined by only FRP. Exploration of existing model performances for predicting the behavior of several tested specimens shows a need for improvement of existing algorithms. The model proposed in the current study is a step in this direction. FRP wrapping is typically used to confine existing concrete members containing conventional lateral steel reinforcement (tie/spiral). The confining effect of lateral steel reinforcement in analytical studies has been uniquely considered in various models. Most models consider confinement due to FRP and ignore the effect of conventional lateral steel reinforcement. Exploration of existing model performances for predicting the behavior of several tested specimens confined by both FRP and lateral steel shows a need for improvement of existing algorithms. A model was proposed in this study which is a step in this direction. Performance of the proposed model and four other representative models from literature was compared to experimental data from four independent databases. In order to fulfill the need for a simple, yet accurate analytical tool for performance assessment of RC columns, a computer program was developed that uses relatively simple analytical methods and material models to accurately predict the performance of RC structures under various loading conditions, including cyclic lateral displacement under a non-proportionally variable axial load (Esmaeily and Xiao 2005, Esmaeily and Peterman 2007). However, it was limited to circular, rectangular, and hollow circular/rectangular sections and uniaxial lateral curvature or displacement. In this regards, a computer program was developed which is the next generation of the aforesaid program with additional functionality and options. Triangulation of the section allows opportunity for cross-sectional geometry. Biaxial lateral curvature/displacement/force combined with any sequence of axial load provides opportunity to analyze the performance of a reinforced concrete column under any load and displacement path. Use of unconventional reinforcement, such as FRP, in lateral as well as longitudinal direction is another feature of this application.
4

COLLAPSE MODELING OF REINFORCED CONCRETE FRAMES UNDER SEISMIC LOADING

Eldawie, Alaaldeen Hassan January 2020 (has links)
No description available.
5

A Detailed Analysis For Evaluation Of The Degradation Characteristics Of Simple Structural Systems

Kurtman, Burak 01 May 2007 (has links) (PDF)
Deterioration in the mechanical properties of concrete, masonry and steel structures are usually observed under repeated cyclic loading in the inelastic response range. Therefore such a behavior becomes critical when these types of structures are subjected to ground motions with specific characteristics. The objective of this study is to address the influence of degrading behavior on simple systems. The Structural Performance Database on the PEER web site, which contains the results of cyclic, lateral-load tests of reinforced concrete columns, are employed to quantify the degradation characteristics of simple systems by calibrating the selected degrading model parameters for unloading stiffness, strength and pinching of a previously developed hysteresis model. The obtained values of parameters from cyclic test results are compared with the recommended values in literature. In the last part of the study, response of SDOF systems with various degradation characteristics are investigated using a set of seismic excitations recorded during some major earthquakes. The results indicate that when all the degradation components are combined in a structural system, the effect of degradation on response values becomes much more pronounced.
6

RESPONSE ESTIMATION OF REINFORCED CONCRETE COLUMNS SUBJECTED TO LATERAL LOADS

Lodhi, Muhammad S. 25 August 2010 (has links)
No description available.
7

Statická analýza konstrukce pro zpracování odpadu / Static Analysis of Waste Treatment Plant Structure

Luliak, Ondřej January 2015 (has links)
Master thesis deals with static analysis of construction of hall type for waste treatment. Thesis includes design and structural assessment of main support elements of construction. This is two-aisled combined skeleton object. The roof system is composed of steel truss structure.
8

Logistikos centras „logista“ aerouosto g. 5 / Logistic center „logista“ in aerouosto street 5

Mažeika, Robertas 19 June 2013 (has links)
Bakalaurinio baigiamajame darbe projektuojamas vieno aukšto ypatingas statinys – logistikos centras „Logista“. Pastatas projektuojamas Šiaulių miesto pramoniniame rajone, Aerouosto gatvėje. Bendras sklypo plotas 6831,68 m2, užstatymo plotas 1539,49 m2. / In this final work is designed one-story special building – logistic centre „Logista“. Building is designed in industrail district of Šiauliai, Aerouosto street. Overall area is 6831,68 m2, built-up area 1539,49 m2.
9

Nosná konstrukce ŽB objektu pro lehký průmyslový provoz / Industrial building Load bearing RC structure

Vrána, Libor January 2014 (has links)
The Master´s thesis describes static analysis and design of reinforced concrete prefabricated of the production hall. Entering the work is to verify and dimension elements of structure.
10

Технико-экономическое сравнение способов усиления железобетонных колонн : магистерская диссертация / Technical and economic comparison of ways to strengthen reinforced concrete columns

Давыдов, М. Ю., Davydov, M. Yu. January 2022 (has links)
Проведено сравнение технико-экономических показателей известных методов усиления железобетонных колонн для различной категории технического состояния. / The comparison of technical and economic indicators of known methods of strengthening reinforced concrete columns for various categories of technical condition is carried out.

Page generated in 0.0231 seconds