• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Atomistic simulations of water confined in cement

Mutisya, Sylvia Mueni January 2018 (has links)
Orientador: Prof. Dr. Caetano Rodrigues Miranda / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, Santo André, 2018. / A pasta de cimento 'e um material complexo, heterog¿eneo e poroso com excelentes propriedades que o tornam um aglutinante adequado para aplica¸c¿oes em constru¸c¿oes. A qualidade e a durabilidade do cimento t¿em uma forte rela¸c¿ao com a 'agua contida nele. Embora uma boa compreens¿ao das intera¸c¿oes complexas entre os poros do cimento e os flu'ýdos confinados 'e necess'aria para resolver os atuais problemas de durabilidade, at'e ent¿ao nenhum modelo foi bem sucedido na captura de todos os processos e o papel da 'agua no cimento continua a ser uma 'area de pesquisa ativa. Com o intuito de contribuir para a compreens¿ao atual da estrutura do cimento, este trabalho se concentrou no estudo dos processos din¿amicos que acontecem na nanoescala da 'agua confinada em poros de cimento. Utilizamos simula¸c¿oes atom'ýsticas que v¿ao desde primeiros princ'ýpios at'e din¿amica molecular para estudar a principal fase de hidrata¸c¿ao, ou seja, hidrato de silicato de c'alcio (C¿S¿H), modelado por uma estrutura de tobermorita com defeitos. A partir de primeiros princ'ýpios, investigamos a morfologia da superf'ýcie da tobermorita a qual rege as intera¸c¿oes da 'agua com o modelo C-S-H. Demonstramos que a tobermorita forma cristais pseudo-hexagonais e a faceta mais est'avel 'e a (004). A fim de explorar sistemas maiores, checamos a transferabilidade do potencial cl'assico CLAYFF na descri¸c¿ao dos componentes do cimento atrav'es de um estudo comparativo entre simula¸c¿oes de mec¿anica molecular e DFT. Embora as frequ¿encias calculadas com DFT e CLAYFF sejam diferentes, as propriedades estruturais e termodinâmicas apresentam grande concord¿ancia, indicando que o potencial CLAYFF 'e adequado para nossos c'alculos. Um par¿ametro importante para quantificar a din¿amica da 'agua no nanoconfinamento 'e o tempo de relaxa¸c¿ao T2. Para validar a metodologia implementada na determina¸c¿ao te'orica do tempo de relaxa¸c¿ao T2, realizamos simula¸c¿oes para a 'agua confinado dentro de nanoporos de calcita (1¿6 nm). Observamos que a din¿amica translacional 'e a principal respons'avel pela relaxa¸c¿ao de spin das mol'eculas de 'agua pr'oximas 'a superf'ýcie. O tempo de relaxa¸c¿ao T2 para mol'eculas de 'agua adsorvidas na superf'ýcie 'e menor e independente do tamanho de poro, no entanto, uma relaxa¸c¿ao de spin do tipo bulk 'e observada no centro dos poros maiores que 3 nm. Buscando elucidar as diversas propriedades da 'agua nanoconfinada em poros C¿S¿H, dividimos nosso estudo em tr¿es partes. Inicialmente, nos dedicamos a compreender os efeitos de confinamento da 'agua entre camadas (< 1 nm) e poros de gel (1¿5 nm) do modelo C-S-H, assim como suas influ¿encias nas intera¸c¿oes de superf'ýcie. A natureza hidrof'ýlica da superf'ýcie C¿ S¿H 'e evidenciada pela din¿amica lenta da 'agua que interage diretamente com a superf'ýcie. Entre as camadas, a 'agua se encontra praticamente im'ovel e exibe propriedades similares aquelas observadas em 'agua super-resfriada. Na sequ¿encia, investigamos o transporte da 'agua dentro da pasta de cimento implementando a relaxa¸c¿ao de troca do tipo 2D T2¿T2 RMN entre poros de gel com 1 nm e 4 nm conectados entre si. Nossos resultados mostraram que h'a trocas de mol'eculas de 'agua entre poros com um tempo caracter'ýstico de troca de 18 ns. Finalmente, conclu'ýmos nossos estudos considerando a natureza particulada do C¿S¿H a fim de estabelecer uma conex¿ao entre os fen¿omenos observados nas escalas nano e meso. Demonstramos que a 'agua confinada dentro do ambiente C¿S¿H edge-edge apresenta uma din¿amica semelhante ao caso das superf'ýcies planares. / Cement paste is a complex, heterogeneous and porous material with outstanding properties that make it a suitable binder for construction applications. The quality and durability of cement have a strong relationship with the water contained in it. While a good understanding of the complex interactions between the cement pores and the confined fluids is necessary to solve the current durability issues, no single model has been successful in capturing all the processes so far and the role of water in cement still remains an area of active research. To contribute to the current understanding of cement structure, this work has focused on studying the dynamical processes happening at the nanoscale of water confined in cement pores. We employ atomistic simulations ranging from first principles to molecular dynamics to study the main hydration phase, i.e calcium silicate hydrate (C¿S¿H), modeled by a defected tobermorite structure. Starting from first principles, the surface morphology of tobermorite which governs the interactions of water with the C¿S¿H model was investigated. It was shown that tobermorite forms pseudohexagonal crystals and the most stable facet is the (004). To upscale the calculations, the transferability of CLAYFF in the description of cementitious materials was tested through a comparative molecular mechanics and DFT study. Although the frequencies calculated with DFT and CLAYFF differ, the structures and thermodynamic quantities agree quite well, making CLAYFF a reasonable potential for our cement calculations. An important parameter to quantify water dynamics in nanoconfinement is NMR T2 relaxation time. To underpin the implemented methodology for theoretical determination of T2 relaxation time, simulations were performed for water confined within calcite nanopores (1¿6 nm). It was revealed that translational dynamics are the main contribution to spin relaxation of near surface water molecules. The T2 relaxation time for water molecules directly adsorbed on the surface is short and pore size independent, however a bulk¿like spin relaxation is observed at center of pores larger than 3 nm. To disentangle the diverse properties of water nanoconfined in C¿S¿H pores, the study of water within C¿S¿H was subdivided into three parts. The first part was dedicated to understanding the relative effect of the C¿S¿H surface and progressive confinement to water confined in the interlayer (< 1 nm) and gel pores (1¿5 nm) of C¿S¿H model. The hydrophilic nature of the C¿S¿H surface is evidenced by the slow dynamics for the water interacting directly with the surface. Within the interlayer, water is highly immobile and exhibits similar properties as those observed in supercooled water. Next, transport within cement paste was investigated by implementing 2D T2¿T2 NMR exchange relaxation between a 1 nm and 4 nm gel connected pores. We showed that there is water exchange in gel pores quantified by an exchange time of 18 ns. Lastly, the particulate nature of C¿S¿H is taken into consideration to facilitate bridging the gap between the atomistic and the mesoscale cement understanding. It was shown that water confined within the C¿S¿H edge¿edge environment portrays similar dynamics as in the C¿S¿H planar surfaces.

Page generated in 0.024 seconds