• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 799
  • 286
  • 191
  • 127
  • 96
  • 61
  • 25
  • 22
  • 22
  • 13
  • 10
  • 8
  • 8
  • 7
  • 7
  • Tagged with
  • 1948
  • 200
  • 182
  • 166
  • 144
  • 132
  • 130
  • 120
  • 115
  • 115
  • 109
  • 109
  • 106
  • 98
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Hot electron transport and relaxation in quantum wells and superlattices

Lary, Jenifer Edith 09 May 1991 (has links)
Electron transport and relaxation may be substantially different in low-dimensional systems compared to that observed in bulk material. In the present work, Monte Carlo models are used for the solution to the Boltzmann transport equation, with scattering rates calculated quantum mechanically for superlattice and quantum wells. Carrier relaxation following optical excitation is examined in multiple quantum well systems. Simulated results of the carrier relaxation process in coupled asymmetric wells and modulation doped wells are in good agreement with published experimental results on similar structures. Scattering rates in superlattices due to polar optical phonons, intervalley phonons, ionized impurities and carrier-carrier scattering are derived. Carrier transport through high energy superlattice minibands is examined in superlattice base hot electron transistors. Additionally, transport in the ballistic limit in periodic quantum wire structures, including geometric superlattices, is examined utilizing a mode matching method. / Graduation date: 1992
392

Feedstock and process variables influencing biomass densification

Shaw, Mark Douglas 17 March 2008
Densification of biomass is often necessary to combat the negative storage and handling characteristics of these low bulk density materials. A consistent, high-quality densified product is strongly desired, but not always delivered. Within the context of pelleting and briquetting, binding agents are commonly added to comminuted biomass feedstocks to improve the quality of the resulting pellets or briquettes. Many feedstocks naturally possess such binding agents; however, they may not be abundant enough or available in a form or state to significantly contribute to product binding. Also, process parameters (pressure and temperature) and material variables (particle size and moisture content) can be adjusted to improve the quality of the final densified product.<p>Densification of ground biomass materials is still not a science, as much work is still required to fully understand how the chemical composition and physical properties, along with the process variables, impact product quality. Generating densification and compression data, along with physical and mechanical properties of a variety of biomass materials will allow for a deeper understanding of the densification process. This in turn will result in the design of more efficient densification equipment, thus improving the feasibility of using biomass for chemical and energy production.<p>Experiments were carried out wherein process (pressure and temperature) and material (particle size and moisture content) variables were studied for their effect on the densification process (compression and relaxation characteristics) and the physical quality of the resulting products (pellets). Two feedstocks were selected for the investigation; namely, poplar wood and wheat straw, two prominent Canadian biomass resources. Steam explosion pretreatment was also investigated as a potential method of improving the densification characteristics and binding capacity of the two biomass feedstocks.<p> Compression/densification and relaxation testing was conducted in a closed-end cylindrical die at loads of 1000, 2000, 3000, and 4000 N (31.6, 63.2, 94.7, and 126.3 MPa) and die temperatures of 70 and 100°C. The raw poplar and wheat straw were first ground through a hammer mill fitted with 0.8 and 3.2 mm screens, while the particle size of the pretreated poplar and wheat straw was not adjusted. The four feedstocks (2 raw and 2 pretreated) were also conditioned to moisture contents of 9 and 15% wb prior to densification. <p> Previously developed empirical compression models fitted to the data elucidated that along with particle rearrangement and deformation, additional compression mechanisms were present during compression. Also, the compressibility and asymptotic modulus of the biomass grinds were increased by increasing the die temperature and decreasing product moisture content. While particle size did not have a significant effect on the compressibility, reducing it increased the resultant asymptotic modulus value. Steam explosion pretreatment served to decrease the compressibility and asymptotic modulus of the grinds.<p>In terms of physical quality of the resulting product, increasing the applied load naturally increased the initial density of the pellets (immediately after removal from the die). Increasing the die temperature served to increase the initial pellet density, decrease the dimensional (diametral and longitudinal) expansion (after 14 days), and increase the tensile strength of the pellets. Decreasing the raw feedstock particle size allowed for the increase in initial pellet density, decrease in diametral expansion (no effect on longitudinal expansion), and increase in tensile strength of the pellets. Decreasing the moisture content of the feedstocks allowed for higher initial pellet densities, but also an increased dimensional expansion. The pretreated feedstocks generally had higher initial pellet densities than the raw grinds. Also, the pretreated feedstocks shrank in diameter and length, and had higher tensile strengths than the raw feedstocks. The high performance of the pretreated poplar and wheat straw (as compared to their raw counterparts) was attributed to the disruption of the lignocellulosic structure, and removal/hydrolysis of hemicellulose, during the steam pretreatment process which was verified by chemical and Fourier transform infrared analysis. As a result, a higher relative amount of lignin was present. Also, the removal/hydrolysis of hemicellulose would indicate that this lignin was more readily available for binding, thus producing superior pellets.
393

Viscous Relaxation Times of the Core and Mantle of Mars from Observations of Tidal Decay of the Orbit of Phobos

Pithawala, Taronish M. 19 December 2011 (has links)
The orbit of Phobos exhibits an along-track acceleration, which suggests energy dissipation in the Mars-Phobos system. We hypothesize that the inferred dissipation occurs within Mars. We explore the response of a layered, incompressible Maxwell viscoelastic Mars to tidal forcing by Phobos using normal mode relaxation theory. Our results elucidate the general behavior of a tidally forced viscoelastic body, and have implications for the viscoelastic structure of Mars. We find the real and imaginary part of the degree-two tidal Love number for Mars to be 0.168 and -9.32x10^−4 respectively. Models which satisfy these and other constraints have either: a fluid core with radius 2040 km and density 5410 kg/m^3; or an elastic inner core with radius 1200 km and density 6700 kg/m^3, along with a fluid outer core with thickness 850 km and density 4850 kg/m^3. These findings support previous hypotheses that Mars has at least a fluid outer core.
394

Viscous Relaxation Times of the Core and Mantle of Mars from Observations of Tidal Decay of the Orbit of Phobos

Pithawala, Taronish M. 19 December 2011 (has links)
The orbit of Phobos exhibits an along-track acceleration, which suggests energy dissipation in the Mars-Phobos system. We hypothesize that the inferred dissipation occurs within Mars. We explore the response of a layered, incompressible Maxwell viscoelastic Mars to tidal forcing by Phobos using normal mode relaxation theory. Our results elucidate the general behavior of a tidally forced viscoelastic body, and have implications for the viscoelastic structure of Mars. We find the real and imaginary part of the degree-two tidal Love number for Mars to be 0.168 and -9.32x10^−4 respectively. Models which satisfy these and other constraints have either: a fluid core with radius 2040 km and density 5410 kg/m^3; or an elastic inner core with radius 1200 km and density 6700 kg/m^3, along with a fluid outer core with thickness 850 km and density 4850 kg/m^3. These findings support previous hypotheses that Mars has at least a fluid outer core.
395

Nuclear magnetic resonance and dynamic characterization of the intrinsically disordered HIV-1 Tat protein

Shojania, Shaheen 14 September 2007 (has links)
The HIV-1 transactivator of transcription (Tat) is a protein essential for both viral gene expression and virus replication. Tat is an RNA-binding protein that, in cooperation with host cell factors cyclin T1 and cyclin-dependent kinase 9, regulates transcription at the level of elongation. Tat also interacts with numerous other intracellular and extracellular proteins, and is implicated in a number of pathogenic processes. The Tat protein is encoded by two exons and is 101 residues in length. The first exon encodes a 72-residue molecule that activates transcription with the same proficiency as the full-length protein. The physico-chemical properties of Tat make it a particularly challenging target for structural studies: Tat contains seven cysteine residues, six of which are essential for transactivation, and is highly susceptible to oxidative cross-linking and aggregation. In addition, a basic segment (residues 48-57) gives the protein a high net positive charge of +12 at pH 7, endowing it with a high affinity for anionic polymers and surfaces. In order to study the structure of Tat, both alone and in complex with partner molecules, we have developed a system for the bacterial expression and purification of polyhistidine-tagged and isotopically enriched (in 15N and 15N /13C) recombinant HIV-1 Tat1-72 (BH10 isolate) that yields large amounts of protein. These preparations have facilitated the assignment of 95% of the non-proline backbone resonances using heteronuclear 3-dimensional nuclear magnetic resonance (NMR) spectroscopy. Analysis by mass spectrometry and NMR demonstrate that the cysteine-rich Tat protein is unambiguously reduced and monomeric in aqueous solution at pH 4. NMR chemical shifts and coupling constants suggest that it exists in a disordered conformation. Line broadening and multiple peaks in the cysteine-rich and core regions suggest that transient folding occurs in two of the five sequence domains. NMR relaxation parameters were measured and analysed by spectral density and model-free approaches both confirming the lack of structure throughout the length of the molecule. The absence of a fixed conformation and the observation of fast dynamics are consistent with the ability of the Tat protein to interact with a wide variety of proteins and nucleic acid lending further support to the concept that Tat exists as an intrinsically disordered protein. / October 2007
396

The de Broglie-Bohm Causal Interpretation of Quantum Mechanics and its Application to some Simple Systems

Colijn, Caroline January 2003 (has links)
The de Broglie-Bohm causal interpretation of quantum mechanics is discussed, and applied to the hydrogen atom in several contexts. Prominent critiques of the causal program are noted and responses are given; it is argued that the de Broglie-Bohm theory is of notable interest to physics. Using the causal theory, electron trajectories are found for the conventional Schrödinger, Pauli and Dirac hydrogen eigenstates. In the Schrödinger case, an additional term is used to account for the spin; this term was not present in the original formulation of the theory but is necessary for the theory to be embedded in a relativistic formulation. In the Schrödinger, Pauli and Dirac cases, the eigenstate trajectories are shown to be circular, with electron motion revolving around the <i>z</i>-axis. Electron trajectories are also found for the 1<i>s</i>-2<i>p</i>0 transition problem under the Schrödinger equation; it is shown that the transition can be characterized by a comparison of the trajectory to the relevant eigenstate trajectories. The structures of the computed trajectories are relevant to the question of the possible evolution of a quantum distribution towards the standard quantum distribution (quantum equilibrium); this process is known as quantum relaxation. The transition problem is generalized to include all possible transitions in hydrogen stimulated by semi-classical radiation, and all of the trajectories found are examined in light of their implications for the evolution of the distribution to the standard distribution. Several promising avenues for future research are discussed.
397

Feedstock and process variables influencing biomass densification

Shaw, Mark Douglas 17 March 2008 (has links)
Densification of biomass is often necessary to combat the negative storage and handling characteristics of these low bulk density materials. A consistent, high-quality densified product is strongly desired, but not always delivered. Within the context of pelleting and briquetting, binding agents are commonly added to comminuted biomass feedstocks to improve the quality of the resulting pellets or briquettes. Many feedstocks naturally possess such binding agents; however, they may not be abundant enough or available in a form or state to significantly contribute to product binding. Also, process parameters (pressure and temperature) and material variables (particle size and moisture content) can be adjusted to improve the quality of the final densified product.<p>Densification of ground biomass materials is still not a science, as much work is still required to fully understand how the chemical composition and physical properties, along with the process variables, impact product quality. Generating densification and compression data, along with physical and mechanical properties of a variety of biomass materials will allow for a deeper understanding of the densification process. This in turn will result in the design of more efficient densification equipment, thus improving the feasibility of using biomass for chemical and energy production.<p>Experiments were carried out wherein process (pressure and temperature) and material (particle size and moisture content) variables were studied for their effect on the densification process (compression and relaxation characteristics) and the physical quality of the resulting products (pellets). Two feedstocks were selected for the investigation; namely, poplar wood and wheat straw, two prominent Canadian biomass resources. Steam explosion pretreatment was also investigated as a potential method of improving the densification characteristics and binding capacity of the two biomass feedstocks.<p> Compression/densification and relaxation testing was conducted in a closed-end cylindrical die at loads of 1000, 2000, 3000, and 4000 N (31.6, 63.2, 94.7, and 126.3 MPa) and die temperatures of 70 and 100°C. The raw poplar and wheat straw were first ground through a hammer mill fitted with 0.8 and 3.2 mm screens, while the particle size of the pretreated poplar and wheat straw was not adjusted. The four feedstocks (2 raw and 2 pretreated) were also conditioned to moisture contents of 9 and 15% wb prior to densification. <p> Previously developed empirical compression models fitted to the data elucidated that along with particle rearrangement and deformation, additional compression mechanisms were present during compression. Also, the compressibility and asymptotic modulus of the biomass grinds were increased by increasing the die temperature and decreasing product moisture content. While particle size did not have a significant effect on the compressibility, reducing it increased the resultant asymptotic modulus value. Steam explosion pretreatment served to decrease the compressibility and asymptotic modulus of the grinds.<p>In terms of physical quality of the resulting product, increasing the applied load naturally increased the initial density of the pellets (immediately after removal from the die). Increasing the die temperature served to increase the initial pellet density, decrease the dimensional (diametral and longitudinal) expansion (after 14 days), and increase the tensile strength of the pellets. Decreasing the raw feedstock particle size allowed for the increase in initial pellet density, decrease in diametral expansion (no effect on longitudinal expansion), and increase in tensile strength of the pellets. Decreasing the moisture content of the feedstocks allowed for higher initial pellet densities, but also an increased dimensional expansion. The pretreated feedstocks generally had higher initial pellet densities than the raw grinds. Also, the pretreated feedstocks shrank in diameter and length, and had higher tensile strengths than the raw feedstocks. The high performance of the pretreated poplar and wheat straw (as compared to their raw counterparts) was attributed to the disruption of the lignocellulosic structure, and removal/hydrolysis of hemicellulose, during the steam pretreatment process which was verified by chemical and Fourier transform infrared analysis. As a result, a higher relative amount of lignin was present. Also, the removal/hydrolysis of hemicellulose would indicate that this lignin was more readily available for binding, thus producing superior pellets.
398

A Finite Element Time Relaxation Method

Valivarthi, Mohan Varma, Muthyala, Hema Chandra Babu January 2012 (has links)
In our project we discuss a finite element time-relaxation method for high Reynolds number flows. The key idea consists of using local projections on polynomials defined on macro element of each pair of two elements sharing a face. We give the formulation for the scalar convection–diffusion equation and a numerical illustration.
399

DNA Molecules Stretching in Torus-type Microchannels

Lin, Ci-jie 05 August 2010 (has links)
In this study, we design different inscribed/circumscribed circular torus-type microchannels to investigate the stretching behavior of DNA molecules. Strain rate and relaxation time play an important role in DNA stretching. In order to perform an analysis of the coil-stretch transition of DNA, we develop a method of stretching DNA molecules by using £gPIV and CLSM measurements. £gPIV is designed to measure the velocity distribution, after which the local strain rate can be estimated. The hydrodynamic stretching of DNA molecules in the elongation flow is observed using a confocal laser scanning microscope (CLSM). The relaxation time of the DNA molecules is then estimated according to the CLSM images analysis. At present, our experiments using the electro-osmotic flow (EOF) driven at various electric fields and viscosities to stretch DNA molecules show how one can investigate the influence of hydrodynamic interactions in the case of stretching of DNA molecules.
400

NMR Investigation of the Dynamics of Paramagnetic Molecules and Alcohols in Nafion 117 Membrane

Tsai, Kun-ming 12 August 2011 (has links)
none

Page generated in 0.0297 seconds