• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 495
  • 249
  • 72
  • 43
  • 42
  • 36
  • 32
  • 16
  • 14
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • Tagged with
  • 1203
  • 192
  • 136
  • 134
  • 113
  • 110
  • 107
  • 103
  • 98
  • 89
  • 87
  • 82
  • 73
  • 71
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Identification of intertidal marine reserves – using habitat types to identify areas of high conservation value

Simon Banks Unknown Date (has links)
The goal of biodiversity conservation has been described as the conservation of diversity at three levels: ecosystem, species and genetic diversity. Developing a representative system of marine protected areas is considered an effective way to achieve this goal in the marine environment. The growing concern associated with threats to the marine environment has resulted in an increased demand for marine reserves (i.e. no-take areas) that conserve representative and adequate examples of biodiversity. Often, the decisions about where to locate reserves must be made in the absence of detailed information on the patterns of distribution of the biota. Alternative approaches are required that include defining habitats as surrogates for biodiversity. The development of biodiversity surrogates at fine-scales (i.e. habitats) will have an increasingly important role in the identification of sites that will contribute to a representative system of marine protected areas. This is because it will increase the likelihood that the system will adequately achieve biodiversity objectives by ensuring protection of a greater range of habitats and species. Surrogate measures of biodiversity enable decisions about where to locate marine reserves to be made more reliably in the absence of detailed data on the distribution of species. There is concern, however, about the reliability of surrogate measures to represent biotic diversity and the use of such measures in the design of marine reserve systems. Currently, surrogate measures are most often based on broad-scale (100s to 1000s of kilometres) bioregional frameworks that define general categories (sandy beach, rocky shore) for intertidal systems. These broad-scale categories are inadequate when making decisions about conservation priorities at the local level (10s to 100s of metres). This study provides an explanation of an intertidal shoreline habitat surrogate (i.e. shoreline types) used to describe 24,216 kilometres of Queensland’s coastline. The protective status of shoreline types was evaluated to assist with designing a representative system of intertidal marine protected areas. The shoreline types derived using physical properties of the shoreline were used as a surrogate for intertidal biodiversity to assist with the identification of sites for inclusion in a candidate system of intertidal marine reserves for 17,463 kilometres of the mainland coast of Queensland, Australia. This represents the first systematic approach, on essentially one-dimensional data, using fine-scale (10s to 100s of metres) intertidal habitats to identify a system of marine reserves for such a large length of coast. A range of solutions would provide for the protection of a representative example of shoreline types in Queensland. Shoreline types were used as a surrogate for intertidal biodiversity (i.e. habitats, microhabitats) to assist with the identification of sites to be included in a representative system of marine reserves in south east Queensland. The use of local-scale shoreline types increased the likelihood that sites identified for conservation achieved representation goals for the mosaic of habitats and microhabitats, and therefore the associated biodiversity present on rocky shores, than that provided by the existing marine reserve protection in south east Queensland. These results indicate that using broad-scale surrogate measures (rocky shore, sandy beach) for biodiversity (habitats, microhabitats and species) are likely to result in poor representation of fine-scale habitats and microhabitats, and therefore intertidal assemblages in marine reserves. When additional fine-scale data were added to reserve selection the summed irreplaceability of 24% (for spatial extent of habitats), and 29% (for presence/absence of microhabitats) of rocky shore sites increased above zero, where a value close to one means a site is necessary, for inclusion in a reserve system, to meet conservation targets. The use of finer-scale physical data to support marine reserve design is more likely to result in the selection of reserves that achieve representation at habitat and microhabitat levels, increasing the likelihood that conservation goals will be achieved. The design and planning of marine and terrestrial protected areas systems should not be undertaken independently of each other because it is likely to lead to inadequate representation of intertidal habitats in either system. The development of reserve systems specially designed to protect intertidal habitats should be integrated into the design of terrestrial and marine protected area systems. Marine reserve networks are a necessary and effective tool for conserving marine biodiversity. They also have an important role in the governance of oceans and the sustainable management of marine resources. The translation of marine reserve network theory into practice is a challenge for conservation practitioners. Barriers to implementing marine reserves include varying levels of political will and agency support and leadership, poorly coordinated marine conservation policy, inconsistencies with the use of legislation, polarised views and opposition from some stakeholders, and difficulties with defining and mapping conservation features. The future success of marine reserve network implementation will become increasingly dependent on: increasing political commitment and agency leadership to remove conflicts within and between government agencies involved in site identification and selection; greater involvement and collaboration with stakeholders; and the provision of resources to define and map conservation features. Key elements of translating marine reserve theory into implementation of a network of marine reserves are discussed based on approaches used successfully in New Zealand and New South Wales (Australia).
392

The ecology of the quokka (Setonix brachyurus) (Macropodidae: Marsupialia) in the Northern Jarrah Forest of Australia

Hayward, Matt, School of Biological, Earth & Environmental Science, UNSW January 2002 (has links)
The quokka (Setonix brachyurus Quoy & Gaimard 1830) is a medium-sized, macropodid marsupial that is endemic to the mesic, south-western corner of Australia. While being a tourist icon on Rottnest Island, the species is threatened with extinction. It has been intensively studied on Rottnest Island in the 1960s and 1970s, however very little is known of its ecology on the mainland. Additionally the insular and mainland environments are extremely different suggesting that ecological differences between the two populations are likely. Consequently, this study sought to determine the basic autecology of the quokka and identify what factors have attributed to its threatened conservation status. The northern jarrah forest of Western Australia was selected as the study region due to it being at the northern limit of extant quokka distribution and because it was thought that the factors threatening the quokka would be exacerbated there. Fossil deposits suggest that the quokka originally occupied an area of approximately 49,000 km2 in the south-western corner of Australia. Historical literature show that they were widespread and abundant when Europeans colonised the region in 1829 but a noticeable and dramatic decline occurred a century later. The arrival of the red fox to the region coincided almost exactly with this decline and so it was probably ultimately responsible. Continued predation by both it and the feral cat are likely to have continued the decline, along with habitat destruction and modification through altered fire regimes. Specific surveys and literature searches show that since the 1950s, the area occupied by the quokka has declined by 45% and since 1990 by 29%. Based on the criteria of the IUCN (Hilton-Taylor 2000), the conservation status of the quokka should remain as vulnerable. An endangered status may be more applicable if the quokkas restriction to patches through its existence as a metapopulation is considered. Trapping of eight sites supporting quokka populations in the mid-1990s revealed three sites now locally extinct despite the ongoing, six year old, fox control programme. Another three are at serious risk of extinction. Extant population sizes ranged from one to 36 and population density ranged from 0.07 to 4.3 individuals per hectare. This is considered to be below the carrying capacity of each site. The overall quokka population size in the northern jarrah forest may be as low as 150 adult individuals, of which half are likely to be female. Even the largest extant populations are highly susceptible to stochastic extinction events. This small size was surprising considering the six year old, introduced predator control programme. Historically, the restriction to discrete habitat patches, the occasional inter-patch movement, the lack of correlation between the dynamics of each population and reports of frequent localised extinctions and colonisations suggest that the quokka population once existed as part of a classic metapopulation. The massive decline of the quokka in the 1930s pushed the metapopulation structure into a non-equilibrium state such that today, the extant populations are the terminal remnants of the original classic metapopulation. Wild mainland quokkas breed throughout the year. A significant reduction in the number of births occurs over summer and this coincides with a decline in female body weight. Despite this, the mainland quokka is relatively fecund and is able to wean two offspring per year. The level of recruitment from pouch young to independence was low and this may explain the apparent lack of population increase following the initiation of fox control. A total of 56 trapped quokkas were fitted with a radio collar. Mean home range size for quokkas was 6.39 ha with a core range of 1.21 ha and this was negatively related to population density. Male home ranges were larger than females but not significantly when the sexual size dimorphism was considered. Nocturnal ranges were larger than diurnal ranges reflecting nocturnal departures from the swamp refugia. Home range sizes varied seasonally, probably due to changes in the distance required to move to obtain sufficient nutrients and water over the dry summer compared to the wet winter and spring. Telemetry confirmed trapping results that showed no movement between swamps or populations. Home range centres shifted to the periphery of the swamp following the winter inundation and this may increase the species susceptibility to predation. The lack of dispersal is probably caused by quokka populations existing below carrying capacity and following selection for philopatry under the threat of predation for dispersing individuals. Without dispersal to recolonise or rescue unpopulated patches, the collapse of the original quokka metapopulation appears to have occurred. On a macrohabitat scale, the quokka in the northern jarrah forest is restricted to Agonis swamp shrubland habitats that form in the open, upper reaches of creek systems on the western side of the forest. This restriction was probably initially due to the high water requirements of the quokka but is likely to have been exacerbated by increased predation pressure since the arrival of the fox. On a microhabitat scale, the quokka is a habitat specialist, preferring early seral stage swamp habitats, probably for foraging, as part of a mosaic of old age swamp that provides refuge. Despite the six year old, introduced predator control programme, foxes and cats are still the major cause of mortality to quokkas. Road kills was the other identifiable cause. Individuals alive at the start of the study had an 81% chance of staying alive until the end. The likelihood of dying was minimised by grouping together with conspecifics, maximising home range size and maximising the time spent within the swampy refuge. Current rates of adult and juvenile survivorship should allow population recovery and so it seems pouch young mortality, reflected by low recruitment, has inhibited the anticipated population increase following predator control. The confounding effect of inadequate unbaited controls meant that little statistical evidence was available on the impact of introduced predators on the quokka, however the models provided support for earlier hypotheses of these. The presence of a quokka population at a site was related to the amount of poison baits delivered ??? reflecting predation pressure, the average age of the swamp and a mosaic of early and late seral stages within the swamp habitat. Recently burnt habitat is thought to provide food for quokkas and long unburnt habitat provides refuge from predation.
393

The ecology of the quokka (Setonix brachyurus) (Macropodidae: Marsupialia) in the Northern Jarrah Forest of Australia

Hayward, Matt, School of Biological, Earth & Environmental Science, UNSW January 2002 (has links)
The quokka (Setonix brachyurus Quoy & Gaimard 1830) is a medium-sized, macropodid marsupial that is endemic to the mesic, south-western corner of Australia. While being a tourist icon on Rottnest Island, the species is threatened with extinction. It has been intensively studied on Rottnest Island in the 1960s and 1970s, however very little is known of its ecology on the mainland. Additionally the insular and mainland environments are extremely different suggesting that ecological differences between the two populations are likely. Consequently, this study sought to determine the basic autecology of the quokka and identify what factors have attributed to its threatened conservation status. The northern jarrah forest of Western Australia was selected as the study region due to it being at the northern limit of extant quokka distribution and because it was thought that the factors threatening the quokka would be exacerbated there. Fossil deposits suggest that the quokka originally occupied an area of approximately 49,000 km2 in the south-western corner of Australia. Historical literature show that they were widespread and abundant when Europeans colonised the region in 1829 but a noticeable and dramatic decline occurred a century later. The arrival of the red fox to the region coincided almost exactly with this decline and so it was probably ultimately responsible. Continued predation by both it and the feral cat are likely to have continued the decline, along with habitat destruction and modification through altered fire regimes. Specific surveys and literature searches show that since the 1950s, the area occupied by the quokka has declined by 45% and since 1990 by 29%. Based on the criteria of the IUCN (Hilton-Taylor 2000), the conservation status of the quokka should remain as vulnerable. An endangered status may be more applicable if the quokkas restriction to patches through its existence as a metapopulation is considered. Trapping of eight sites supporting quokka populations in the mid-1990s revealed three sites now locally extinct despite the ongoing, six year old, fox control programme. Another three are at serious risk of extinction. Extant population sizes ranged from one to 36 and population density ranged from 0.07 to 4.3 individuals per hectare. This is considered to be below the carrying capacity of each site. The overall quokka population size in the northern jarrah forest may be as low as 150 adult individuals, of which half are likely to be female. Even the largest extant populations are highly susceptible to stochastic extinction events. This small size was surprising considering the six year old, introduced predator control programme. Historically, the restriction to discrete habitat patches, the occasional inter-patch movement, the lack of correlation between the dynamics of each population and reports of frequent localised extinctions and colonisations suggest that the quokka population once existed as part of a classic metapopulation. The massive decline of the quokka in the 1930s pushed the metapopulation structure into a non-equilibrium state such that today, the extant populations are the terminal remnants of the original classic metapopulation. Wild mainland quokkas breed throughout the year. A significant reduction in the number of births occurs over summer and this coincides with a decline in female body weight. Despite this, the mainland quokka is relatively fecund and is able to wean two offspring per year. The level of recruitment from pouch young to independence was low and this may explain the apparent lack of population increase following the initiation of fox control. A total of 56 trapped quokkas were fitted with a radio collar. Mean home range size for quokkas was 6.39 ha with a core range of 1.21 ha and this was negatively related to population density. Male home ranges were larger than females but not significantly when the sexual size dimorphism was considered. Nocturnal ranges were larger than diurnal ranges reflecting nocturnal departures from the swamp refugia. Home range sizes varied seasonally, probably due to changes in the distance required to move to obtain sufficient nutrients and water over the dry summer compared to the wet winter and spring. Telemetry confirmed trapping results that showed no movement between swamps or populations. Home range centres shifted to the periphery of the swamp following the winter inundation and this may increase the species susceptibility to predation. The lack of dispersal is probably caused by quokka populations existing below carrying capacity and following selection for philopatry under the threat of predation for dispersing individuals. Without dispersal to recolonise or rescue unpopulated patches, the collapse of the original quokka metapopulation appears to have occurred. On a macrohabitat scale, the quokka in the northern jarrah forest is restricted to Agonis swamp shrubland habitats that form in the open, upper reaches of creek systems on the western side of the forest. This restriction was probably initially due to the high water requirements of the quokka but is likely to have been exacerbated by increased predation pressure since the arrival of the fox. On a microhabitat scale, the quokka is a habitat specialist, preferring early seral stage swamp habitats, probably for foraging, as part of a mosaic of old age swamp that provides refuge. Despite the six year old, introduced predator control programme, foxes and cats are still the major cause of mortality to quokkas. Road kills was the other identifiable cause. Individuals alive at the start of the study had an 81% chance of staying alive until the end. The likelihood of dying was minimised by grouping together with conspecifics, maximising home range size and maximising the time spent within the swampy refuge. Current rates of adult and juvenile survivorship should allow population recovery and so it seems pouch young mortality, reflected by low recruitment, has inhibited the anticipated population increase following predator control. The confounding effect of inadequate unbaited controls meant that little statistical evidence was available on the impact of introduced predators on the quokka, however the models provided support for earlier hypotheses of these. The presence of a quokka population at a site was related to the amount of poison baits delivered ??? reflecting predation pressure, the average age of the swamp and a mosaic of early and late seral stages within the swamp habitat. Recently burnt habitat is thought to provide food for quokkas and long unburnt habitat provides refuge from predation.
394

The ecology of the quokka (Setonix brachyurus) (Macropodidae: Marsupialia) in the Northern Jarrah Forest of Australia

Hayward, Matt, School of Biological, Earth & Environmental Science, UNSW January 2002 (has links)
The quokka (Setonix brachyurus Quoy & Gaimard 1830) is a medium-sized, macropodid marsupial that is endemic to the mesic, south-western corner of Australia. While being a tourist icon on Rottnest Island, the species is threatened with extinction. It has been intensively studied on Rottnest Island in the 1960s and 1970s, however very little is known of its ecology on the mainland. Additionally the insular and mainland environments are extremely different suggesting that ecological differences between the two populations are likely. Consequently, this study sought to determine the basic autecology of the quokka and identify what factors have attributed to its threatened conservation status. The northern jarrah forest of Western Australia was selected as the study region due to it being at the northern limit of extant quokka distribution and because it was thought that the factors threatening the quokka would be exacerbated there. Fossil deposits suggest that the quokka originally occupied an area of approximately 49,000 km2 in the south-western corner of Australia. Historical literature show that they were widespread and abundant when Europeans colonised the region in 1829 but a noticeable and dramatic decline occurred a century later. The arrival of the red fox to the region coincided almost exactly with this decline and so it was probably ultimately responsible. Continued predation by both it and the feral cat are likely to have continued the decline, along with habitat destruction and modification through altered fire regimes. Specific surveys and literature searches show that since the 1950s, the area occupied by the quokka has declined by 45% and since 1990 by 29%. Based on the criteria of the IUCN (Hilton-Taylor 2000), the conservation status of the quokka should remain as vulnerable. An endangered status may be more applicable if the quokkas restriction to patches through its existence as a metapopulation is considered. Trapping of eight sites supporting quokka populations in the mid-1990s revealed three sites now locally extinct despite the ongoing, six year old, fox control programme. Another three are at serious risk of extinction. Extant population sizes ranged from one to 36 and population density ranged from 0.07 to 4.3 individuals per hectare. This is considered to be below the carrying capacity of each site. The overall quokka population size in the northern jarrah forest may be as low as 150 adult individuals, of which half are likely to be female. Even the largest extant populations are highly susceptible to stochastic extinction events. This small size was surprising considering the six year old, introduced predator control programme. Historically, the restriction to discrete habitat patches, the occasional inter-patch movement, the lack of correlation between the dynamics of each population and reports of frequent localised extinctions and colonisations suggest that the quokka population once existed as part of a classic metapopulation. The massive decline of the quokka in the 1930s pushed the metapopulation structure into a non-equilibrium state such that today, the extant populations are the terminal remnants of the original classic metapopulation. Wild mainland quokkas breed throughout the year. A significant reduction in the number of births occurs over summer and this coincides with a decline in female body weight. Despite this, the mainland quokka is relatively fecund and is able to wean two offspring per year. The level of recruitment from pouch young to independence was low and this may explain the apparent lack of population increase following the initiation of fox control. A total of 56 trapped quokkas were fitted with a radio collar. Mean home range size for quokkas was 6.39 ha with a core range of 1.21 ha and this was negatively related to population density. Male home ranges were larger than females but not significantly when the sexual size dimorphism was considered. Nocturnal ranges were larger than diurnal ranges reflecting nocturnal departures from the swamp refugia. Home range sizes varied seasonally, probably due to changes in the distance required to move to obtain sufficient nutrients and water over the dry summer compared to the wet winter and spring. Telemetry confirmed trapping results that showed no movement between swamps or populations. Home range centres shifted to the periphery of the swamp following the winter inundation and this may increase the species susceptibility to predation. The lack of dispersal is probably caused by quokka populations existing below carrying capacity and following selection for philopatry under the threat of predation for dispersing individuals. Without dispersal to recolonise or rescue unpopulated patches, the collapse of the original quokka metapopulation appears to have occurred. On a macrohabitat scale, the quokka in the northern jarrah forest is restricted to Agonis swamp shrubland habitats that form in the open, upper reaches of creek systems on the western side of the forest. This restriction was probably initially due to the high water requirements of the quokka but is likely to have been exacerbated by increased predation pressure since the arrival of the fox. On a microhabitat scale, the quokka is a habitat specialist, preferring early seral stage swamp habitats, probably for foraging, as part of a mosaic of old age swamp that provides refuge. Despite the six year old, introduced predator control programme, foxes and cats are still the major cause of mortality to quokkas. Road kills was the other identifiable cause. Individuals alive at the start of the study had an 81% chance of staying alive until the end. The likelihood of dying was minimised by grouping together with conspecifics, maximising home range size and maximising the time spent within the swampy refuge. Current rates of adult and juvenile survivorship should allow population recovery and so it seems pouch young mortality, reflected by low recruitment, has inhibited the anticipated population increase following predator control. The confounding effect of inadequate unbaited controls meant that little statistical evidence was available on the impact of introduced predators on the quokka, however the models provided support for earlier hypotheses of these. The presence of a quokka population at a site was related to the amount of poison baits delivered ??? reflecting predation pressure, the average age of the swamp and a mosaic of early and late seral stages within the swamp habitat. Recently burnt habitat is thought to provide food for quokkas and long unburnt habitat provides refuge from predation.
395

Human impacts on Australian sea lions, Neophoca cinerea, hauled out on Carnac Island (Perth, Western Australia): implications for wildlife and tourism management

jporsini@bigpond.net.au, Jean-Paul Orsini January 2004 (has links)
Over the last 15 years, pinniped tourism has experienced a rapid growth in the Southern Hemisphere, and particularly in Australia and New Zealand where at least four sites attract more than 100,000 visitors per year. Tourism focused on the Australian sea lion (Neophoca cinerea), a protected species endemic to Australia, occurs in at least nine sites in South Australia and Western Australia. Australian sea lions haul out on several offshore islands in the Perth region. Carnac Island Nature Reserve is one of the main sites where people can view sea lions near Perth, either during recreational activities or on commercial tours. This study sought: (1) to investigate the potential impact of human visitors on Australian sea lions hauled out on Carnac Island, (2) to consider implications of the results for the management of Carnac Island Nature Reserve, and (3) to examine under which conditions tourism and recreation around sea lions can be sustained in the long term. Sea lion numbers, rate of return to the site, behavioural response to human presence and incidents of disturbances of sea lions by visitors were recorded over a period of four months on Carnac Island. A survey of 207 visitors was also carried out. Findings indicated that there were two main types of human impacts on the sea lions: • A specific state of sea lion vigilance induced by low level, but ongoing, repetitive disturbances from human presence, sustained at various approach distances ranging to more than 15 m, vigilance that is different from the behaviour profile observed in the absence of human disturbance, • Impacts resulting from incidental direct disturbances of sea lions by visitors from inappropriate human recreational activities or from visitors trying to elicit a more ‘active’ sea lion response than the usual ‘sleeping or resting’ behaviour on display; these impacts included sea lions retreating and leaving the beach, or displaying aggressive behaviour. Impacts on sea lions from these disturbances may range from a potential sea lion physiological stress response to sea lions leaving the beach, a reduction in the time sea lions spend hauling out, and, in the longer term, the risk of sea lions abandoning the site altogether. Repeated instances of visitors (including unsupervised young children) approaching sea lions at very short distances of less than 2.5 m represented a public safety risk. Results also indicated that (1) the numbers of sea lions hauled out and their rate of return to the beach did not appear to be affected by an increase in the level of human visitation (although longer-term studies would be required to confirm this result); and (2) there appeared to be a high turnover rate of sea lions at the site from day to day, suggesting that there are frequent arrivals and departures of sea lions to and from Carnac Island. The visitor survey indicated that many visitors to Carnac Island had a recreational focus that was not primarily directed towards sea lion viewing (‘incidental ecotourists’). Although many visitors witnessed incidental disturbance caused by humans to sea lions, they did not seem to recognise that they themselves could disturb sea lions through their mere presence. Visitors also seemed to have a limited awareness of the safety risk posed by sea lions at close range. Visitors expressed support for the presence of a volunteer ranger on the beach and for more on-site information about sea lions. Finally, visitors indicated that they greatly valued their sea lion viewing experience. It is anticipated that the continued increase in visitation to Carnac Island from recreation and from tourism will result in intensified competition for space between humans and sea lions. Long-term impacts of human disturbances on sea lions are unknown, but a physiological stress response and/or the abandonment of haulout sites has been observed in other pinniped species. The findings of this study highlight the need to implement a long-term strategy to reduce disturbance levels of sea lions by visitors at Carnac Island to ensure that tourism and recreation around sea lions can be sustained in the long term. Recommendations include measures to control visitor numbers on the island through an equitable allocation system between various user groups, the development of on-site sea lion interpretation and a public education and awareness program, the setting up of a Sea Lion Sanctuary Zone on the main beach, ongoing monitoring of sea lion and visitor numbers and other data, and a system of training and accreditation of guides employed by tour operators.
396

Collaborating sustainable development in cross-cultural environments /

Lindquist, Michael. January 1999 (has links) (PDF)
Thesis (M. Env. St.)--University of Adelaide, Mawson Centre of Geographical and Environmental Studies, 2000? / Includes bibliographical references (leaves 100-117).
397

Hydrology of forest ecosystems in the Honouliuli Preserve implications for groundwater recharge and watershed restoration /

Gaskill, Teresa G. Restom January 2004 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 2004. / Includes bibliographical references.
398

Enhanced transparency of the federal reserve : impact on federal funds rate forecast errors /

Powers, Susanna. January 2008 (has links)
Thesis (M.A.)--University of Nevada, Reno, 2008. / "May, 2008." Includes bibliographical references (leaves 87-96). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2009]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
399

Influence of the Conservation Reserve Program and landscape composition on the spatial demographics of prairie grouse in northeastern South Dakota /

Runia, Travis J. January 2009 (has links) (PDF)
Thesis (M.S.)--Wildlife and Fisheries Sciences Dept., South Dakota State University, 2009. / Includes bibliographical references (leaves 74-85). Also available via the World Wide Web.
400

History of the Voluntary Intermodal Sealift Agreement /

Jones, Stacey L. January 1900 (has links) (PDF)
Thesis (M.S.)--Naval Postgraduate School, 2002. / Cover title. "June 2002." AD-A404 869. Includes bibliographical references (p. 73-79). Also available via the World Wide Web.

Page generated in 0.0696 seconds