• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 137
  • 89
  • 20
  • 17
  • 15
  • 11
  • 11
  • 6
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 401
  • 401
  • 62
  • 62
  • 60
  • 60
  • 57
  • 56
  • 54
  • 54
  • 53
  • 52
  • 51
  • 50
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

LOCALIZED MECHANICAL DEFORMATION AND DISSOLUTION OF 45S5 BIOGLASS

Li, Ding 01 January 2010 (has links)
Bioactive glasses react with the human physiological solution in control of their biofunctionality. The stress state in bioactive glasses determines the chemomechanical reaction and their biofunctionality. Using the microindentation technique, the effect of the indentation deformation on the surface damage and material dissolution of 45S5 bioglass was investigated. The indentation-induced residual stresses were calculated. Complete anelastic recoveries of the indentation depths and the impression marks were observed for the first time, which was likely driven by the stored strain energy over the anelastic deformation zone. The indentation-induced local surface damages were revealed before and after the immersion tests in phosphate buffer solution (PBS). The growth of the cracks in the PBS solution displayed the stress-corrosion behavior with the crack-growth speed being a linear function of the indentation load. 45S5-bioglass was crystallized at temperature of 650 ºC. Microindentation technique also was used to study the localized mechanical behavior of the crystallized 45S5-bioglass. The crystallization had little effect on the indentation hardness, and the indentation hardness of the crystallized 45S5-bioglass is the same as that of the corresponding material in vitreous state. The fracture toughness is about 3 times less than that of annealed 45S5-bioglass in vitreous state, suggesting the preference of using bioactive glasses of vitreous state in the implant applications. Also, the effect of crystallization on the material dissolution was examined in phosphate buffer solution. We also studied the growth and mechanical behaviors of the Ca-P precipitate layers formed on 45S5 bioglass in simulated body fluid. The thickness of the Ca-P precipitate layers was proportional to the square root of the immersion time, and the ratio of Ca/P in the Ca-P precipitate layers increased with the immersion time and approached 1.67, corresponding to the stoichiometric hydroxyapaptite (HA).Using the indentation technique, the indentation behavior of the Ca-P precipitate layers was investigated. The indentation hardness of the HA layers formed in SBF was found to be 0.40 GPa, and the contact modulus was 12.0 GPa. The contact modulus of 12.0 GPa is close to that of cortical bone. In this thesis, the primary mechanical properties of the non-crystalline and crystalline bioglass 45S5 were revealed. The relationship between the dissolution rate and localized residual stresses are discussed. With such knowledge, the evaluation of implants with respect to manufacturing processes, control, and service conditions now has another variable to consider and evaluate against performance.
52

外力作用下における鋼板への補剛材のすみ肉溶接で生じる残留応力に関する解析的研究

ITOH, Yoshito, HIROHATA, Mikihito, 伊藤, 義人, 廣畑, 幹人 January 2013 (has links)
No description available.
53

Plastic Interaction Relations for Elliptical and Semi-Elliptical Hollow Sections

Nowzartash, Farhood 31 May 2011 (has links)
The advancement of the structural steel manufacturing industry has led to the recent emergence of steel members with Elliptical Hollow Sections (EHS) and Semi Elliptical Hollow Sections (SEHS). Although these sections are gaining popularity among architects, the lack of design guidelines specifically tailored towards these sections inhibits their efficient structural use. Within this context, this thesis provides several steps towards the development of such guidelines. A review of the manufacturing process of hot-rolled steel sections is conducted with emphasis on hollow structural sections. The main factors affecting the formation of residual stresses during cooling of the sections are discussed. Lower bound plastic interaction relations for EHS subjected to combinations of axial force, bi-axial bending moments and torsion are then derived. The formulation is based on the lower bound theorem of plasticity and the maximum distortional energy density yield criterion. Its applicability for conducting the cross-sectional interaction check in structural steel design problems is illustrated through a practical example. A simplified and conservative interaction equation is then proposed based on curve fitting of the results of the lower bound solution. Upper bound interaction relations are next developed for EHS subjected to combinations of axial force, bi-axial bending moments, torsion and bimoments. The formulation is based on kinematically admissible strain fields within the context of the upper bound theorem of plasticity. The interaction relations derived successfully capture the effect of confining radial strains present at welded end sections, as well as sections that are free to deform in the radial direction away from end welded sections. An iterative solution technique is developed to solve the resulting highly non-linear system of interaction relations. The effects of residual stresses and initial imperfections on axial compressive resistance of hot-rolled EHS are then incorporated into the lower bound interaction relations. Towards that goal, the thermo-mechanical properties of steel were extracted from the literature. A thermo-mechanical finite element model was developed for prediction of residual stresses in rolled sections. The validity of the model was assessed by comparison against residual stress measurements available in the literature. The model is then applied to predict the residual stresses in hot-rolled EHS. A series of geometric and material nonlinear finite element analyses is conducted on columns of EHS sections. The analyses include predicted residual stresses and initial out-of-straightness imperfections in order to determine the inelastic buckling capacity of EHS members and generate column curves for EHS sections. The column curves are subsequently compared to those based on Canadian, American and European design codes. Two column curve equations are proposed in a format similar to that of the Canadian Standards for buckling about major and minor axes. The column curves were subsequently combined with the interaction relations developed to provide design rules for EHS members under combined loads. The last contribution of the thesis provides a formulation of lower bound interaction relations for SEHS subject to combinations of axial force, bi-axial bending moments and torsion. An iterative scheme for solving the parametric form of the interaction relations is developed and a grid of admissible stress resultant combinations is generated. A series of trial functions are fitted to the grid of internal force combinations and two simplified and conservative interaction equations are proposed.
54

Finite Element Modeling Of Stress Evolution In Quenching Process

Dogu, Doruk 01 January 2006 (has links) (PDF)
In this thesis the finite element computer code QUEANA simulating the quenching of axisymetric parts and determining the residual stress state was improved by adding pre- and post-processors. The code was further verified by additional numerical experiments and comparison of the results with commercial software &ldquo / MARC&rdquo / . The possible applications of this code are optimization of industrial quenching processes by controlling the evolution of internal stresses and dimensional changes.
55

放射光高エネルギーX線による遮熱コーティングのはく離応力の評価

鈴木, 賢治, SUZUKI, Kenji, 田中, 啓介, TANAKA, Keisuke, 秋庭, 義明, AKINIWA, Yoshiaki, 川村, 昌志, KAWAMURA, Masashi, 西尾, 光司, NISHIO, Koji, 尾角, 英毅, OKADO, Hideki 05 1900 (has links)
No description available.
56

Estudo de parametros experimentais envolvidos na determinacao de macrotensoes residuais, em tubos de aco inoxidavel, metodo da difracao de raios-X

GUIMARAES, LUCIANA R. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:36:32Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:59:25Z (GMT). No. of bitstreams: 1 04130.pdf: 1952283 bytes, checksum: c596a65231cb28c36bc01287b898c928 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
57

Estudo de parametros experimentais envolvidos na determinacao de macrotensoes residuais, em tubos de aco inoxidavel, metodo da difracao de raios-X

GUIMARAES, LUCIANA R. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:36:32Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:59:25Z (GMT). No. of bitstreams: 1 04130.pdf: 1952283 bytes, checksum: c596a65231cb28c36bc01287b898c928 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
58

Plastic Interaction Relations for Elliptical and Semi-Elliptical Hollow Sections

Nowzartash, Farhood January 2011 (has links)
The advancement of the structural steel manufacturing industry has led to the recent emergence of steel members with Elliptical Hollow Sections (EHS) and Semi Elliptical Hollow Sections (SEHS). Although these sections are gaining popularity among architects, the lack of design guidelines specifically tailored towards these sections inhibits their efficient structural use. Within this context, this thesis provides several steps towards the development of such guidelines. A review of the manufacturing process of hot-rolled steel sections is conducted with emphasis on hollow structural sections. The main factors affecting the formation of residual stresses during cooling of the sections are discussed. Lower bound plastic interaction relations for EHS subjected to combinations of axial force, bi-axial bending moments and torsion are then derived. The formulation is based on the lower bound theorem of plasticity and the maximum distortional energy density yield criterion. Its applicability for conducting the cross-sectional interaction check in structural steel design problems is illustrated through a practical example. A simplified and conservative interaction equation is then proposed based on curve fitting of the results of the lower bound solution. Upper bound interaction relations are next developed for EHS subjected to combinations of axial force, bi-axial bending moments, torsion and bimoments. The formulation is based on kinematically admissible strain fields within the context of the upper bound theorem of plasticity. The interaction relations derived successfully capture the effect of confining radial strains present at welded end sections, as well as sections that are free to deform in the radial direction away from end welded sections. An iterative solution technique is developed to solve the resulting highly non-linear system of interaction relations. The effects of residual stresses and initial imperfections on axial compressive resistance of hot-rolled EHS are then incorporated into the lower bound interaction relations. Towards that goal, the thermo-mechanical properties of steel were extracted from the literature. A thermo-mechanical finite element model was developed for prediction of residual stresses in rolled sections. The validity of the model was assessed by comparison against residual stress measurements available in the literature. The model is then applied to predict the residual stresses in hot-rolled EHS. A series of geometric and material nonlinear finite element analyses is conducted on columns of EHS sections. The analyses include predicted residual stresses and initial out-of-straightness imperfections in order to determine the inelastic buckling capacity of EHS members and generate column curves for EHS sections. The column curves are subsequently compared to those based on Canadian, American and European design codes. Two column curve equations are proposed in a format similar to that of the Canadian Standards for buckling about major and minor axes. The column curves were subsequently combined with the interaction relations developed to provide design rules for EHS members under combined loads. The last contribution of the thesis provides a formulation of lower bound interaction relations for SEHS subject to combinations of axial force, bi-axial bending moments and torsion. An iterative scheme for solving the parametric form of the interaction relations is developed and a grid of admissible stress resultant combinations is generated. A series of trial functions are fitted to the grid of internal force combinations and two simplified and conservative interaction equations are proposed.
59

Residual stress and phase characterisation on zirconium oxides using synchrotron X-ray diffraction

Polatidis, Efthymios January 2012 (has links)
The present work was produced as part of the MUZIC consortium, a collaboration between a multi-university team from the UK and industrial partners working on the field of nuclear energy, fabrication of alloys and nuclear research. The aim of the project is to establish a multidiscipline mechanistic understanding of the corrosion and breakaway processes of zirconium alloys used as fuel cladding materials in the nuclear industry. A better understanding of the corrosion mechanism of zirconium alloys will not only aid the development of better performing alloys, but will also allow more accurate models to be developed to reliably predict the service life of existing alloys. This could lead to higher burn-up, increase of energy production and reduction of nuclear waste produced.This work seeks to provide a better understanding of the role of residual stresses in the oxide, which are produced during oxidation due to high Pilling-Bedworth ratio and their impact on oxide phase transformation and oxidation kinetics by employing high energy synchrotron X-ray diffraction techniques. This is achieved by observing how stresses change as oxide growth approaches and passes through transition of the corrosion kinetics, their evolution across the oxide thickness, in situ characterising stresses and phase growth early in oxidation process and how stress changes can affect corrosion properties.It was found that relatively high compressive stresses in the two oxide crystal structures are present. The stresses relax with time up to moments before transition where a possible threshold stress magnitude is reached to aid an extensive tetragonal to monoclinic phase transformation. This generalised tetragonal to monoclinic transformation is believed to produce highly stressed monoclinic crystal structure grains and cause defects in the oxide. The above observation is further supported by a decrease of the tetragonal zirconia content. This is the moment that the oxide looses its protective character and a transition of the corrosion kinetics occurs. By comparing different materials it was observed that the minimum magnitude of the tetragonal phase is lower in better performing alloys while the tetragonal content is some cases was relatively low. It is suggested that the amount of the tetragonal phase, in the oxide layer, is not as important as the rate of it transforming into monoclinic. The extent of tetragonal to monoclinic transformation, that introduces defects in the oxide, defines how protective an oxide layer is. The present work provides a contribution to the available knowledge of the importance of residual stresses in the oxide layer and metal substrate of zirconium alloys and how they can affect corrosion rates or act as a precursor to the corrosion transition.
60

Flow forming of aeroengine materials

Kubilay, Ceylan January 2014 (has links)
Flow forming is a fairly new technique used for the production of dimensionally accurate near net shaped hollow components. The process has many advantages such as cost effectiveness and eliminating further operations like welding, machining, etc. This study focuses on the characterization of flow formed components to understand the process. Flow formed components are composed of different reductions and characterization techniques are applied to reveal the resulting microstructural differences. Effect of number of passes on the material is also investigated. Metallographic analysis was conducted by optical microscope, electron micro probe analyser (EPMA) and the electron back scatter diffraction technique (EBSD) in a scanning electron microscope (SEM). Texture evolution of the samples was examined either by laboratory X-ray diffraction or EBSD technique. Furthermore, residual stresses were measured by neutron diffraction (at StrainAnalyzer for Large and Small Scale Engineering Applications (SALSA) and PulseOverlap Diffractometer (POLDI) instruments), laboratory X-ray diffraction and hole drilling. Stress relief heat treatments were carried out at 500°C for either 4 or 16 hours to mitigate residual stresses without losing much of the strength. The experiments conducted show that flow forming is a process resulting in heterogeneous microstructure with grains elongated along the deformation direction. Texture evolution is different from the typical rolling of steels with body centred cubic crystal structure. Any significant effect of the number of passes was not observed. Due to the nature of the process, residual stresses in the axial and hoop directions are critical. Therefore, stress distributions through thickness of the samples are plotted. It is observed that in the thick section, the stresses are higher. Heat treatments applied at 500°C for 4 or 16 hours are effective in diminishing the stresses.

Page generated in 0.0308 seconds