11 |
Proposed llfe prediction model for an automotive wheelMcGrath, PJ 01 January 2004 (has links)
Summary
Historicully, stress analysis used for component design
assames "ideal" materials, i.e. with isotropic,
homogeneous and uniform metallurgical properties.
We know that this is untrue, no matter how good
the design. As design cannot provide fo, defect-free
materials or components, ok appropriute defect tolerance
should be the aim of the designer. Hence the
concept of fuil-safe components has been introduced
fo, safety-critical purts. Automotive wheels, howeveF,
ure not considered fail-safe and fatigue lW
prediction techniques fo, these components need to
be improved in an endeavour to provide light-weight,
attractive, but still safe und durable wheels. This
applied approuch, where the proposed lW prediction
model employs relutionships given by Gerber und a
proposed lW prediction model derived from combining
aspects of lW prediction models according to
Collins und Juvinall & Marshek. The results show
good coruelation with that of uctual wheel
fatigue
data.
|
12 |
Residual stress measurement using cross-slitting and ESPIAn, Yuntao 11 1900 (has links)
Residual stresses are “locked-in” within a material, and exist without any external loads.
Such stresses are developed during most common manufacturing processes, for example
welding, cold working and grinding. These “hidden” stresses can be quite large, and can
have profound effects on engineering properties, notably fatigue life and dimensional
stability. To obtain reliable and accurate residual stress measurements for uniform and
non-uniform stress states, a novel and practical method using crossing-slitting and ESPI
is presented here. Cross-slitting releases all three in-plane stress components and leaves
nearby deformation areas intact. The ESPI (Electronic Speckle Pattern Interferometry)
technique gives an attractive tool for practical use, because measurements provide a large
quantity of useful data, require little initial setup and can be completed rapidly and at low
per-measurement cost. A new ESPI setup consisting of shutter and double-mirror device
is designed to achieve dual-axis measurements to balance the measurement sensitivities
of all in-plane stress components. To evaluate data quality, a pixel quality control and
correction procedure is also applied. This helps to locate bad data pixels and provides
opportunities to correct them. The measurement results show that this procedure plays an
important role for the success of residual stress evaluation. Based on the observed
displacement data and finite element calculated calibration data, an inverse computation
method is developed to recover the residual stresses in a material for both uniform and
non-uniform cases. By combining cross-slitting and ESPI, more reliable results for the
three in-plane residual stress components can be obtained.
|
13 |
Rolling contact fatigue of thermal spray coatingsAhmed, Rehan January 1998 (has links)
The practical advantages of thermal spray coatings like high deposition rates, low cost and tribological properties of high wear resistance have enabled these coatings to become an integral part of aircraft and automobile industry. Recent advancements in thermal spraying techniques like high particle speed and temperature call for new applications for these coatings. This experimental study addresses the Rolling Contact Fatigue performance of thermal spray coatings deposited by a variety of techniques like High Velocity Oxy-Fuel (HVOF), Detonation Gun (D-Gun) and Plasma spraying. RCF tests were conducted using a modified four ball machine in conventional steel ball bearing and hybrid ceramic bearing configurations. Tribological conditions during the RCF tests were varied by changing the test lubricant and the lubrication mechanism, contact load and shape of the drive coated rolling element to vary the roll/slip ratio. RCF tests were analyzed on the basis of the performance, coating failures using surface and subsurface observations, and residual stress studies. Experimental and theoretical studies of the ball kinematics have also been included. These tests revealed that the performance of the coated rolling elements was dependent upon the coating and the substrate properties. The coating thickness, substrate hardness, tribological conditions during the test, coating and substrate material as well as the coating process and the substrate preparation significantly affect the coating performance and the failure modes. Three different failure modes of these coatings have been discussed along with the changes in the near surface residual stress behaviour of the coated rolling elements.
|
14 |
Residual stress measurement using cross-slitting and ESPIAn, Yuntao 11 1900 (has links)
Residual stresses are “locked-in” within a material, and exist without any external loads.
Such stresses are developed during most common manufacturing processes, for example
welding, cold working and grinding. These “hidden” stresses can be quite large, and can
have profound effects on engineering properties, notably fatigue life and dimensional
stability. To obtain reliable and accurate residual stress measurements for uniform and
non-uniform stress states, a novel and practical method using crossing-slitting and ESPI
is presented here. Cross-slitting releases all three in-plane stress components and leaves
nearby deformation areas intact. The ESPI (Electronic Speckle Pattern Interferometry)
technique gives an attractive tool for practical use, because measurements provide a large
quantity of useful data, require little initial setup and can be completed rapidly and at low
per-measurement cost. A new ESPI setup consisting of shutter and double-mirror device
is designed to achieve dual-axis measurements to balance the measurement sensitivities
of all in-plane stress components. To evaluate data quality, a pixel quality control and
correction procedure is also applied. This helps to locate bad data pixels and provides
opportunities to correct them. The measurement results show that this procedure plays an
important role for the success of residual stress evaluation. Based on the observed
displacement data and finite element calculated calibration data, an inverse computation
method is developed to recover the residual stresses in a material for both uniform and
non-uniform cases. By combining cross-slitting and ESPI, more reliable results for the
three in-plane residual stress components can be obtained. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
|
15 |
A Study on Residual stresses and Creep Deformation in Laser Module PackagingSheen, Maw-Tyan 21 July 2000 (has links)
The roles of residual stresses distribution and creep deformation in the post-weld-shifts (PWS) of a laser model packaging are investigated in this dissertation. The temperature dependent material properties are employed to calculate the distribution of the residual stresses introduced in the solidification of soldering joints and lasering joints respectively. A power law proposed by Norton is applied to the creep deformation calculation. The post-weld-shifts of fiber-solder-ferrule (FSF) introduced in the aging and temperature cycling tests are simulation. A finite element package ¡V MARC is used to module the fiber-solder-ferrule joint and laser joint respectively. Experimental results of the PWS of a FSF joint are compared with the calculated shifts. Results indicate that the redistribution of residual stresses in joint and the creep deformation under high temperature load may affect the PWS significantly. A good agreement between the simulated and the measured results indicate the proposed model is feasible in the laser module packaging analysis.
|
16 |
Residual stress measurement using X-ray diffractionAnderoglu, Osman 17 February 2005 (has links)
This paper briefly describes the theory and methods of x-ray residual stress
measurements.
Residual stresses can be defined as the stresses which remain in a material in the
absence of any external forces. There are many stress determination methods. Some of
those methods are destructive and some are nondestructive. X-ray residual stress
measurement is considered as a nondestructive method.
X-ray diffraction together with the other diffraction techniques of residual stress
measurement uses the distance between crystallographic planes as a strain gage. The
deformations cause changes in the spacing of the lattice planes from their stress free
value to a new value that corresponds to the magnitude of the residual stress. Because of
Poissons ratio effect, if a tensile stress is applied, the lattice spacing will increase for
planes perpendicular to the stress direction, and decrease for planes parallel to the stress
direction. This new spacing will be the same in any similarly oriented planes, with
respect to the applied stress. Therefore the method can only be applied to crystalline,
polycrystalline and semi-crystalline materials.
The diffraction angle, 2θ, is measured experimentally and then the lattice spacing
is calculated from the diffraction angle, and the known x-ray wavelength using Bragg's
Law. Once the d-spacing values are known, they can be plotted versus 2 sin ψ, ( ψ is the
tilt angle). In this paper, stress measurement of the samples that exhibit a linear behavior
as in the case of a homogenous isotropic sample in a biaxial stress state is included. The
plot of d vs. 2 sin ψ is a straight line which slope is proportional to stress. On the other
hand, the second set of samples showed oscillatory d vs. 2 sin ψ behavior. The oscillatory
behavior indicates the presence of inhomogeneous stress distribution. In this case the xray
elastic constants must be used instead of E and ν values. These constants can be
obtained from the literature for a given material and reflection combination. It is also
possible to obtain these values experimentally. Calculation of the residual stresses for
these samples is beyond the scope of this paper and will not be discussed here.
|
17 |
Characterization of residual stresses in birefringent materials applied to multicrystalline silicon wafersSkenes, Kevin 12 January 2015 (has links)
Birefringence has been used to study transparent materials since 1815, and is based on the decomposition of a polarized ray of light into two distinct rays when passing through an optically anisotropic material. This thesis uses this phenomenon in a study of phase retardation in crystalline materials. Single and multicrystalline silicon was chosen as the model material. Silicon is an interesting and important material in its own right, and the use of photoelasticity to determine stresses at linear and planar defects can have important consequences in the electrical performance of devices such as electronics and photovoltaic cells. This thesis presents the results of an experimental investigation of residual stresses in multicrystalline silicon wafers using near-infrared (NIR) transmission photoelasticity. NIR transmission through multicrystalline silicon is found to vary with crystallographic orientation and relate to planar atomic density, enabling the assignment of appropriate stress-optic coefficients to different grains. Noise in the data is reduced with the Ramji and Ramesh 10-step phase shifting algorithm when compared to the Patterson and Wang process. Normal stresses at points of zero maximum shear stress can be characterized based on isoclinic behavior around the point. Points at which all normal stresses are zero serve as boundary conditions for shear difference integration and allow for stress separation from a point that is not a free boundary. The second part of this work focuses on residual stresses in silicon wafers subjected to known physical damage such as indentations. Residual stress fields around Vickers indentations in silicon are found to be larger in size than predicted by contact mechanics. Placing Vickers indentations in close proximity creates a secondary stress field surrounding the entire indentation array, and a relationship is developed to explain this behavior. High residual stresses measured at grain boundaries are found to be consistent with models of atomic displacement. Placement of Vickers indentations near grain boundaries results in a change in stress state at the grain boundaries. The results of this study demonstrate the capacity of birefringence as a non-destructive evaluation tool and describe the effects of residual stress concentrations in silicon wafers.
|
18 |
An analysis of the feasibility of predictive process control of welding applications using infrared pyrometers and thermal metamodelsEly, George Ray 27 October 2010 (has links)
Predictive process control (PPC) is the use of predictive, physical models as the basis for process control [1]. In contrast, conventional control algorithms utilize statistical models that are derived from repetitive process trials. PPC employs in-process monitoring and control of manufacturing processes. PPC algorithms are very promising approaches for welding of small lots or customized products with rapid changes in materials, geometry, or processing conditions. They may also be valuable for welding high value products for which repeated trials and waste are not acceptable. In this research, small-lot braze-welding of UNS C22000 commercial bronze with gas metal arc welding (GMAW) technology is selected as a representative application of PPC. Thermal models of the welding process are constructed to predict the effects of changes in process parameters on the response of temperature measurements. Because accurate thermal models are too computationally expensive for direct use in a control algorithm, metamodels are constructed to drastically reduce computational expense while retaining a high degree of accuracy. Then, the feasibility of PPC of welding applications is analyzed with regard to uncertainties and time delays in an existing welding station and thermal metamodels of the welding process. Lastly, a qualitative residual stress model is developed to nondestructively assess weld quality in end-user parts. / text
|
19 |
Finite element modelling of stress development during deposition of ion assisted coatingsWard, David John January 2001 (has links)
No description available.
|
20 |
The potential application of temperature control to 3D welding as a rapid prototyping techniqueSpencer, John David January 1997 (has links)
No description available.
|
Page generated in 0.0199 seconds