• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 425
  • 48
  • 39
  • 32
  • 25
  • 15
  • 13
  • 12
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 737
  • 200
  • 187
  • 158
  • 142
  • 96
  • 83
  • 66
  • 65
  • 59
  • 56
  • 55
  • 52
  • 51
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

The Influence of Red Blood Cell Scattering in Optical Pathways of Retinal Vessel Oximetry

LeBlanc, Serge E. 18 February 2011 (has links)
The ability to measure the oxygen saturation, oximetry, of retinal blood both non-invasively and in-vivo has been a goal of eye research for years. Retinal oximetry can in principle be achieved from the measurement of the reflectance spectrum of the ocular fundus. Oximetry calculations are however complicated by the scattering of red blood cells, the different pathways of light through blood and the ocular tissues that light interacts with before exiting the eye. The goal of this thesis was to investigate the influence of red blood cell scattering for different light paths relevant to retinal oximetry. Results of in-vitro whole blood experiments found calculated oxygen saturation differences between blood samples measured under different retinal light paths, and these differences did not depend on the absorbance path length. We also showed that the calculated oxygen saturation value determined by a multiple linear regression Beer-Lambert absorbance model depended on the wavelength range chosen for analysis. The wavelength dependency on the calculated oxygen saturation value is due in part to the correlation that exists between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficient spectra and to errors in the assumptions built into the Beer-Lambert absorbance model. A wavelength region with low correlation between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficients was found that is hypothesized to be a good range to calculate oxygen saturation using a multiple linear regression approach.
392

The role of Vsxl in the development of cone bipolar cells in mouse retina

Shi, Zhiwei 03 November 2011 (has links)
Visual system homeobox 1 (Vsx1) is a paired-like:CVC homeodomain transcription factor that is expressed in a subset of retinal bipolar cells. Vsx1-null mice have previously been shown to have defects in bipolar cell terminal differentiation characterized by the reduced expression of four OFF bipolar cell-specific markers and electrophysiological defects in the OFF visual signaling pathway. The availability of recently identified bipolar cell markers enables a further characterization of the Vsx1-null mutant. I determined that Vsx1 is expressed in Type 7 ON bipolar cells and observed the upregulation of three cell markers: Cabp5, Chx10, and alpha-gustducin:GFP in this cell type in Vsx1-null mice. These data reveal a trend in which Vsx1 functions as a transcriptional repressor in Type 7 ON bipolar cells and as an activator in Type 2 OFF bipolar cells. Lastly, my data indicate that Vsx1 is required for the expression of two Type 3a bipolar cell markers, however, the mechanism by which it does so appears to be complex, as I was unable to detect Vsx1 protein or reporter gene expression in this cell type. / Graduate
393

Retinal Image Analysis and its use in Medical Applications

Zhang, Yibo (Bob) 19 April 2011 (has links)
Retina located in the back of the eye is not only a vital part of human sight, but also contains valuable information that can be used in biometric security applications, or for the diagnosis of certain diseases. In order to analyze this information from retinal images, its features of blood vessels, microaneurysms and the optic disc require extraction and detection respectively. We propose a method to extract vessels called MF-FDOG. MF-FDOG consists of using two filters, Matched Filter (MF) and the first-order derivative of Gaussian (FDOG). The vessel map is extracted by applying a threshold to the response of MF, which is adaptively adjusted by the mean response of FDOG. This method allows us to better distinguish vessel objects from non-vessel objects. Microaneurysm (MA) detection is accomplished with two proposed algorithms, Multi-scale Correlation Filtering (MSCF) and Dictionary Learning (DL) with Sparse Representation Classifier (SRC). MSCF is hierarchical in nature, consisting of two levels: coarse level microaneurysm candidate detection and fine level true microaneurysm detection. In the first level, all possible microaneurysm candidates are found while the second level extracts features from each candidate and compares them to a discrimination table for decision (MA or non-MA). In Dictionary Learning with Sparse Representation Classifier, MA and non-MA objects are extracted from images and used to learn two dictionaries, MA and non-MA. Sparse Representation Classifier is then applied to each MA candidate object detected beforehand, using the two dictionaries to determine class membership. The detection result is further improved by adding a class discrimination term into the Dictionary Learning model. This approach is known as Centralized Dictionary Learning (CDL) with Sparse Representation Classifier. The optic disc (OD) is an important anatomical feature in retinal images, and its detection is vital for developing automated screening programs. Currently, there is no algorithm designed to automatically detect the OD in fundus images captured from Asians, which are larger and have thicker vessels compared to Caucasians. We propose such a method to complement current algorithms using two steps: OD vessel candidate detection and OD vessel candidate matching. The proposed extraction/detection approaches are tested in medical applications, specifically the case study of detecting diabetic retinopathy (DR). DR is a complication of diabetes that damages the retina and can lead to blindness. There are four stages of DR and is a leading cause of sight loss in industrialized nations. Using MF-FDOG, blood vessels were extracted from DR images, while DR images fed into MSCF and Dictionary and Centralized Dictionary Learning with Sparse Representation Classifier produced good microaneurysm detection results. Using a new database consisting of only Asian DR patients, we successfully tested our OD detection method. As part of future work we intend to improve existing methods such as enhancing low contrast microaneurysms and better scale selection. In additional, we will extract other features from the retina, develop a generalized OD detection method, apply Dictionary Learning with Sparse Representation Classifier to vessel extraction, and use the new image database to carry out more experiments in medical applications.
394

Retinal degeneration in and in vivo electroretinography measurements of Smoky Joe Chickens

Tran, Thanh Tan January 2012 (has links)
Inherited retinal degenerative diseases can affect various components of the retina leading to blindness. Five different mutant strains of chicken have been studied extensively as potential models for inherited retinal degeneration. The Smoky Joe (SJ) chicken is a sixth genetically blind strain of White Leghorns that shows various degrees of blindness at hatch and by 8 weeks post-hatch, have complete blindness for those that are homozygous. The objective of this study was to characterize the retinal degeneration in these birds by histology, both during embryonic and post-hatch development, and to the retinal function using electroretinograms (ERG). For both embryonic and post-hatch development, a significantly lower number of cells were found in the retina of blind birds compared to sighted (both p<0.0001). The significant contributor to cell number decrease was the loss of amacrine cells located in the inner nuclear layer. Photoreceptors were also found to potentially decrease in number, but at a later stage. ERG recordings revealed decreases in amplitudes of b-waves and oscillatory potentials in blind birds, but not in sighted. Both histology and ERG findings support the idea that the inner retinal cells are affected. The results indicate that degeneration in the Smoky Joe retina occurs mostly within the inner nuclear layer affecting amacrine cells. This hampers the functional capacity of the retina, causing blindness.
395

Retinal Imaging: Acquisition, Processing, and Application of Mueller Matrix Confocal Scanning Laser Polarimetry

Cookson, Christopher James January 2013 (has links)
The focus of this thesis is the improvement of acquisition and processing of Mueller matrix polarimetry using a confocal scanning laser ophthalmoscope (CSLO) and the application of Mueller matrix polarimetry to image the retina. Stepper motors were incorporated into a CSLO to semi-automate Mueller matrix polarimetry and were used in retinal image acquisition. Success rates of Fourier transform based edge detection filters, designed to improve the registration of retinal images, were compared. The acquired polarimetry images were used to reassess 2 image quality enhancement techniques, Mueller matrix reconstruction (MMR) and Stokes vector reconstruction (SVR), focusing on the role of auto-contrasting or normalization within the techniques and the degree to which auto-contrasting or normalization is responsible for image quality improvement of the resulting images. Mueller matrix polarimetry was also applied to find the retardance image of a malaria infected retinal blood vessel imaged in a confocal scanning laser microscope (CSLM) to visualize hemozoin within the vessel. Image quality enhancement techniques were also applied and image quality improvement was quantified for this blood vessel. The semi-automation of Mueller matrix polarimetry yielded a significant reduction in experimental acquisition time (80%) and a non-significant reduction in registration time (44%). A larger sample size would give higher power and this result might become significant. The reduction in registration time was most likely due to less movement of the eye, particularly in terms of decreased rotation seen between registered images. Fourier transform edge detection methods increased the success rate of registration from 73.9% to 92.3%. Assessment of the 2 MMR images (max entropy and max signal-to-noise ratio (SNR)) showed that comparison to the best CSLO images (not auto-contrasted) yielded significant average image quality improvements of 158% and 4% when quantified with entropy and SNR, respectively. When compared to best auto-contrasted CSLO images, significant image quality improvements were 11% and 5% for entropy and SNR, respectively. Images constructed from auto-contrasted input images were of significantly higher quality than images reconstructed from original images. Of the 2 other images assessed (modified degree of polarization (DOPM) and the first element of the Stokes vector (S0)), DOPM and S0 yielded significant average image quality improvements quantified by entropy except for the DOPM image of the RNFL. SNR was not improved significantly when either SVR image was compared to the best CSLO images. Compared to the best auto-contrasted CSLO images, neither DOPM nor S0 improved average image quality significantly. This result might change with a larger number of participants. When MMR were applied to images of malaria infected retinal slides, image quality was improved by 19.7% and 15.3% in terms of entropy and SNR, respectively, when compared to the best CSLO image. The DOPM image yielded image quality improvements of 8.6% and -24.3% and the S0 image gave improvements of 9.5% and 9.4% in entropy and SNR, respectively. Although percent increase in image quality was reduced when images were compared to initial auto-contrasted CSLO images, the final image quality was improved when auto-contrasting occurred prior to polarimetry calculations for max SNR and max entropy images. Quantitative values of retardance could not be found due to physical constraints in the CSLM that did not allow for characterization of its polarization properties and vibrational noise. Mueller matrix polarimetry used to find the retardance image of a malaria infected retina sample did yield visualization of hemozoin within the vessel but only qualitatively. In conclusion, improvements in the acquisition and registration of CSLO images were successful in leading to considerably shorter experimentation and processing times. In terms of polarimetric image quality improvement techniques, when compared to the best CSLO image. A large proportion of the improvement was in fact due to partially or completely stretching the pixel values across the dynamic range of the images within the algorithm of each technique. However, in general the image quality was still improved by the Mueller matrix reconstruction techniques using both entropy and SNR to generate the CSLO retinal images and the CSLM imaged malaria infected sample. In the malaria sample, retinal blood vessel visualization was also qualitatively improved. The images yielded from Mueller matrix polarimetry applied to a malaria infected retinal sample localized hemozoin within the blood vessel, but a quantitative image of the phase retardance could not be achieved.
396

Bovine Models of Human Retinal Disease: Effect of Perivascular Cells on Retinal Endothelial Cell Permeability

Tretiach, Marina Louise January 2005 (has links)
Doctor of Philosophy (Medicine) / Background: Diabetic vascular complications affect both the macro- and microvasculature. Microvascular pathology in diabetes may be mediated by biochemical factors that precipitate cellular changes at both the gene and protein levels. In the diabetic retina, vascular pathology is found mainly in microvessels, including the retinal precapillary arterioles, capillaries and venules. Macular oedema secondary to breakdown of the inner blood-retinal barrier is the most common cause of vision impairment in diabetic retinopathy. Müller cells play a critical role in the trophic support of retinal neurons and blood vessels. In chronic diabetes, Müller cells are increasingly unable to maintain their supportive functions and may themselves undergo changes that exacerbate the retinal pathology. The consequences of early diabetic changes in retinal cells are primarily considered in this thesis. Aims: This thesis aims to investigate the effect of perivascular cells (Müller cells, RPE, pericytes) on retinal endothelial cell permeability using an established in vitro model. Methods: Immunohistochemistry, cell morphology and cell growth patterns were used to characterise primary bovine retinal cells (Müller cells, RPE, pericytes and endothelial cells). An in vitro model of the blood-retinal barrier was refined by coculturing retinal endothelial cells with perivascular cells (Müller cells or pericytes) on opposite sides of a permeable Transwell filter. The integrity of the barrier formed by endothelial cells was assessed by transendothelial electrical resistance (TEER) measurements. Functional characteristics of endothelial cells were compared with ultrastructural morphology to determine if different cell types have barrier-enhancing effects on endothelial cell cultures. Once the co-culture model was established, retinal endothelial cells and Müller cells were exposed to different environmental conditions (20% oxygen, normoxia; 1% oxygen, hypoxia) to examine the effect of perivascular cells on endothelial cell permeability under reduced oxygen conditions. Barrier integrity was assessed by TEER measurements and permeability was measured by passive diffusion of radiolabelled tracers from the luminal to the abluminal side of the endothelial cell barrier. A further study investigated the mechanism of laser therapy on re-establishment of retinal endothelial cell barrier integrity. Müller cells and RPE, that comprise the scar formed after laser photocoagulation, and control cells (Müller cells and pericytes, RPE cells and ECV304, an epithelial cell line) were grown in long-term culture and treated with blue-green argon laser. Lasered cells were placed underneath confluent retinal endothelial cells growing on a permeable filter, providing conditioned medium to the basal surface of endothelial cells. The effect of conditioned medium on endothelial cell permeability was determined, as above. Results: Co-cultures of retinal endothelial cells and Müller cells on opposite sides of a permeable filter showed that Müller cells can enhance the integrity of the endothelial cell barrier, most likely through soluble factors. Low basal resistances generated by endothelial cells from different retinal isolations may be the result of erratic growth characteristics (determined by ultrastructural studies) or the selection of vessel fragments without true ‘barrier characteristics’ in the isolation step. When Müller cells were co-cultured in close apposition to endothelial cells under normoxic conditions, the barrier integrity was enhanced and permeability was reduced. Under hypoxic conditions, Müller cells had a detrimental effect on the integrity of the endothelial cell barrier and permeability was increased in closely apposed cells. Conditioned medium from long-term cultured Müller cells and RPE that typically comprise the scar formed after lasering, enhanced TEER and reduced permeability of cultured endothelial cells. Conclusions: These studies confirm that bovine tissues can be used as a suitable model to investigate the role of perivascular cells on the permeability of retinal endothelial cells. The dual effect of Müller cells on the retinal endothelial cell barrier under different environmental conditions, underscores the critical role of Müller cells in regulating the blood-retinal barrier in health and disease. These studies also raise the possibility that soluble factor(s) secreted by Müller cells and RPE subsequent to laser treatment reduce the permeability of retinal vascular endothelium. Future studies to identify these factor(s) may have implications for the clinical treatment of macular oedema secondary to diseases including diabetic retinopathy.
397

Investigating the expression of the topographic guidance molecules, EphA5 and ephrin-A2, as well as metallothionein function, in the injured and regenerating adult mammalian visual system

Symonds, Andrew C. E. January 2006 (has links)
[Truncated abstract] During development of the visual system, topographic connections between the retina and the superior colliculus are established using guidance molecules. The EphA family of tyrosine kinase receptors and their ephrin-A ligands are important for establishing topography between the temporo-nasal axis of the retina and the rostro-caudal axis of the superior colliculus. After injury to the visual system via unilateral optic nerve transection, adult mammalian retinal ganglion cells fail to regenerate axons spontaneously to their main visual centre, which in rodents, is the superior colliculus. The EphA5 gradient is down-regulated from a temporalhigh to nasallow gradient to a uniform low level in the few surviving retinal ganglion cells, but ephrin-A2 is upregulated back to a significant rostrallow to caudalhigh gradient in the superior colliculus, similar to that seen during development. In this thesis, a number of experiments have been undertaken to investigate further how EphA5 and ephrin-A2 are regulated after injury and how they may play a role once regeneration has been encouraged through surgical intervention. In the first study, targeted unilateral retinal laser lesions were used to ablate either dorso-nasal or ventro-temporal quadrants of the retina. ... Surviving and regenerating retinal ganglion cells in the retina, and axons in the optic nerve, were analysed. The data suggest that metallothionein-I/II increases axonal regeneration through the optic nerve injury site but, at the dose administered, had no neuroprotective effects on retinal ganglion cells. This thesis provides further insight into the response of guidance molecules to injury, and the potential of metallothionein-I/II as a neuroregenerative factor in the adult mammalian visual system. The regulation of both EphA5 and ephrin-A2 through transsynaptic connections may be a response common to other guidance molecules. Such connectivity now needs to be studied further to understand how it may impact on various treatments designed to increase re-connectivity after other brain injuries, including stroke. The ectopic expression of ephrin-A2 at the insertion site of a peripheral nerve graft in the superior colliculus, implicate this guidance molecule in the glial scar for the first time. Therefore, to overcome inhibition by the glial scar, axons must also overcome ephrin-A2 mediated inhibition, potentially by the addition of EphA5 fusion proteins. Metallothionein-I/II?s effect of increasing axonal regeneration through the optic nerve injury site suggests that it could be used to increase the number of regenerating axons reaching their target. Such strategies to increase the absolute number of regenerated axons should enable these axons to better use the EphA5 and ephrin-A2 topographic gradients to optimize regenerative success.
398

Born too small or too early : effects on blood pressure, renal function and retinal vascularization in adulthood : experimental and clinical studies /

Kistner, Anna, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 5 uppsatser.
399

Subcortical pathways for colour vision /

Szmajda, Brett A. January 2006 (has links)
Thesis (Ph.D.)--University of Melbourne, The National Vision Research Institute of Australia and Dept. of Optometry & Vision Sciences, 2007. / Typescript. Includes bibliographical references (leaves 95-111).
400

Investigations of perimetry and gaze-stability in the healthy and deceased retina /

Källmark, Fredrik. January 2005 (has links)
Licentiatavhandling (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 2 uppsatser.

Page generated in 0.0172 seconds