Spelling suggestions: "subject:"beerlambert"" "subject:"erambert""
1 |
ULTRASHORT LASER PULSE PROPAGATION IN WATERByeon, Joong-Hyeok 16 January 2010 (has links)
We simulate ultrashort pulse propagation through water by numerical methods, which
is a kind of optical communication research. Ultrashort pulses have been known to have
non Beer-Lambert behavior, whereas continuous waves (CW) obey the Beer-Lambert
law. People have expected that the ultrashort pulse loses less intensity for a given
distance in water than CW which implies that the pulse can travel over longer distances.
In order to understand this characteristic of the pulse, we model numerically its spectral
and temporal evolution as a function of traveling distance through water. We achieve the
pulse intensity attenuation with traveling distance, obtain the temporal envelope of the
pulse and compare them with experimental data. This research proves that the spectral
and temporal profile of a pulse can be predicted knowing only the intensity spectrum of
the input pulse and the refractive index spectrum of water in the linear regime. The real
feasibility and the advantage of using an ultrashort pulse as a communication carrier will
also be discussed.
|
2 |
Modelo de calibração betaCAVALCANTE, Mileno Tavares 31 January 2013 (has links)
Submitted by Danielle Karla Martins Silva (danielle.martins@ufpe.br) on 2015-03-12T12:55:45Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Cavalcante_2013_Modelo de Calibração Beta.pdf: 1287396 bytes, checksum: 4e58b1ff2a09bfb84e58587aa92cd49c (MD5) / Made available in DSpace on 2015-03-12T12:55:45Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Cavalcante_2013_Modelo de Calibração Beta.pdf: 1287396 bytes, checksum: 4e58b1ff2a09bfb84e58587aa92cd49c (MD5)
Previous issue date: 2013 / O presente trabalho discute o problema de calibração em química analítica no contexto de não linearidade dos dados. A hipótese principal e que a media da variável resposta está restrita ao intervalo (0; 1) e pode ser modelada por uma distribuição beta, de modo similar ao modelo de regressão beta (Ferrari e Cribari-Neto, 2004). O objetivo _e propor uma extensão do modelo de regressão beta a estudos de calibração e verificar as propriedades de seu estimador para a concentração do analítico x comparativamente aos modelos linear e quadrático, que supõe resíduos normalmente distribuídos com variância constante. Aplicações a dados reais para os modelos considerados são apresentadas.
|
3 |
Μελέτη της απορρόφησης του φωτός από το ανθρώπινο δέρμα με σκοπό τη μέτρηση βιολογικών συντελεστώνΜανουσίδης, Ιωάννης 19 January 2010 (has links)
Τα τελευταία χρόνια, οι μη επεμβατικές μέθοδοι διάγνωσης αλλά και θεραπείας κερδίζουν συνεχώς έδαφος έναντι των παραδοσιακών επεμβατικών μεθόδων. Σκοπός της διπλωματικής αυτής εργασίας είναι η μελέτη της μετάδοσης του φωτός μέσα στο ανθρώπινο δέρμα και κυρίως η μελέτη της απορρόφησης που υφίσταται από αυτό, με σκοπό την μέτρηση βιολογικών συντελεστών, όπως οι συγκεντρώσεις κάποιων ουσιών στον οργανισμό, ο υπολογισμός των οποίων μπορεί να οδηγήσει σε χρήσιμα διαγνωστικά συμπεράσματα. Επίσης, αναλύεται η μέθοδος της παλμικής οξυμετρίας, που χρησιμοποιείται ευρύτατα για την παρακολούθηση του αρτηριακού κορεσμού οξυγόνου και του καρδιακού παλμού. Μετρώντας την απορρόφηση του φωτός σε δύο διαφορετικά μήκη κύματος, ένα στο ερυθρό (660 nm) και ένα στο εγγύς υπέρυθρο (940 nm), και απομονώνοντας το μεταβαλλόμενο μέρος αυτής, που οφείλεται στις διακυμάνσεις στον όγκο του αρτηριακού αίματος, μπορούμε να υπολογίσουμε με τη χρήση του νόμου των Beer-Lambert τον κορεσμό του αίματος σε οξυγόνο μέσω του υπολογισμού των συγκεντρώσεων του σε μειωμένη αιμογλοβίνη και σε οξυαιμογλοβίνη. Τέλος, περιγράφεται η υλοποίηση της μεθόδου και ο σχεδιασμός ενός παλμικού οξυμέτρου ενός chip με τη χρήση του μικροεπεξεργαστή MSP430. / Over recent years, non-invasive methods of diagnosis and treatment are gaining ground against the traditional invasive methods. In this thesis, an integrated review of the transfer of optical radiation into human skin and primarily light absorption through human skin is presented, aiming at measuring biological information, such as concentrations of certain substances in the human body, whose calculation can lead to useful diagnostic conclusions. The method of Pulse Oximetry, which is widely used for monitoring arterial oxygen saturation and heart rate of a patient, is also presented. By measuring the absorption of light at two different wavelengths, one red (660 nm) and one near-infrared (940 nm), and isolating its AC component, which is a result of the variations in the volume of arterial blood, we can calculate the oxygen saturation using the Beer-Lambert law, by estimating the concentrations of oxyhemoglobin and reduced hemoglobin. Moreover, the implementation of a single chip portable pulse oximeter using the ultra low power capability of the MSP430 is demonstrated.
|
4 |
Toward Computationally Efficient Models for Near-infrared and Photoacoustic Tomographic ImagingBhatt, Manish January 2016 (has links) (PDF)
Near Infrared (NIR) and Photoacoustic (PA) Imaging are promising imaging modalities that provides functional information of the soft biological tissues in-vivo, with applica-tions in breast and brain tissue imaging. These techniques use near infrared light in the wavelength range of (600 nm - 900 nm), giving an advantage of being non-ionizing imaging modality. This makes the prolong bed-side monitoring of tissue feasible, making them highly desirable medical imaging modalities in the clinic. The computation models that are deployed in these imaging scenarios are computationally demanding and often require a high performance computing systems to deploy them in real-time. This the-sis presents three computationally e cient models for near-infrared and photoacoustic imaging, without compromising the quality of measured functional properties, to make them more appealing in clinical scenarios.
The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modi ed the BeerLambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concen-trations for NIR spectroscopic data analysis. Even though MBLL is e ective in terms of providing qualitative comparison, it su ers from its applicability across tissue types and tissue dimensions. A Lambert-W function-based modeling for light propagation in biological tissues is proposed and introduced, which is a generalized version of the Beer-Lambert model. The proposed modeling provides parametrization of tissue properties, which includes two attenuation coe cients o and . The model is validated against the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. Numerous human and animal tissues are included to validate the proposed empirical model, including an inhomogeneous adult human head model. The proposed model, which has a closed form (analytical), is rst of its kind in providing accurate modeling of NIR light propagation in biological tissues.
Model based image reconstruction techniques yield better quantitative accuracy in photoacoustic (PA) image reconstruction, especially in limited data cases. An exponen-tial ltering of singular values is proposed for carrying out the image reconstruction in photoacoustic tomography. The results were compared with widely popular Tikhonov regularization, time reversal, and the state of the art least-squares QR based reconstruc-tion algorithms for three digital phantom cases with varying signal-to-noise ratios of data. The exponential ltering provided superior photoacoustic images of better quanti-tative accuracy. Moreover, the proposed ltering approach was observed to be less biased towards regularization parameter and did not come with any additional computational burden as it was implemented within the Tikhonov ltering framework. It was also shown that the standard Tikhonov ltering becomes an approximation to the proposed exponential ltering.
The model based image reconstruction techniques for photoacoustic tomography re-quire an explicit regularization. An error estimate minimization based approach was proposed and developed for the determination of regularization parameter for PA imag-ing. The regularization was used within Lanczos bidiagonalization framework, which provides the advantage of dimensionality reduction for a large system of equations. The proposed method was computationally faster than the state of the art techniques and provided similar performance in terms of quantitative accuracy in reconstructed im-ages.The estimate can also be utilized in determining suitable regularization parameter for other popular techniques such as Tikhonov,exponential ltering and `1 norm based regularization methods.
|
5 |
Quantitative Measurement of Cerebral Hemodynamics During Activation of Auditory Cortex With Single- and Multi-Distance Near Infrared SpectroscopyMohammad, Penaz Parveen Sultana 29 June 2018 (has links)
Functional Near Infrared Spectroscopy (fNIRS) is a safe, low-cost, non-invasive opti-cal technique to monitor focal changes in brain activity using neurovascular coupling and measurements of local tissue oxygenation, i.e., changes in concentrations of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR)[42]. This thesis utilizes two fNIRS approaches to measure hemodynamic changes associated with functional stimulation of the human auditory cortex. The first approach, single-distance continuous wave NIRS (CW-NIRS) utilizes relatively simple instrumentation and the Modified-Beer Lambert (MBL) law to estimate activation induced changes in tissue oxygenation (∆CHbO and ∆CHbR)[17]. The second more complex approach, frequency domain NIRS (FD-NIRS), employs a photon diffusion model of light propagation through tissue to measure both baseline (CHbO and CHbR), and stimulus induced changes in oxygenated and deoxygenated hemoglobin[10]. FD-NIRS is more quantitative, but requires measurements at multiple light source-detector separations and thus its use in measuring focal changes in cerebral hemodynamics have been limited.
A commercial FD-NIRS instrument was used to measure the cerebral hemodynamics from the right auditory cortex of 9 adults (21 ± 35 years) with normal hearing, while presented with two types of auditory stimuli: a 1000 Hz Pure tone, and Broad band noise. Measured optical intensities were analyzed using both MBL and photon diffusion approaches. Oxygenated hemoglobin was found to increase by 0.351 ± 0.116 µM and 0.060 ± 0.084 µM for Pure tone and Broad band noise stimuli, when analyzed by the MBL method at the ‘best’ source-detector separation. On average (across all sources), MBL analysis estimated an increase in CHbO of 0.100±0.075 µM and 0.099±0.084 µM respectively for Pure tone and Broad band noise stimulation. In contrast, the frequency domain analysis method estimated CHbO to increase by −0.401 ± 0.384 µM and −0.031 ± 0.358 µM for Pure tone and Broad band noise stimulation respectively. These results suggest that although more quantitative, multi-distance FD-NIRS may underestimate focal changes in cerebral hemodynamics that occur due to functional activation. Potential reasons for this discrepancy, including the partial volume effect, are discussed.
|
6 |
The Influence of Red Blood Cell Scattering in Optical Pathways of Retinal Vessel OximetryLeBlanc, Serge E. 18 February 2011 (has links)
The ability to measure the oxygen saturation, oximetry, of retinal blood both non-invasively and in-vivo has been a goal of eye research for years. Retinal oximetry can in principle be achieved from the measurement of the reflectance spectrum of the ocular fundus. Oximetry calculations are however complicated by the scattering of red blood cells, the different pathways of light through blood and the ocular tissues that light interacts with before exiting the eye. The goal of this thesis was to investigate the influence of red blood cell scattering for different light paths relevant to retinal oximetry. Results of in-vitro whole blood experiments found calculated oxygen saturation differences between blood samples measured under different retinal light paths, and these differences did not depend on the absorbance path length. We also showed that the calculated oxygen saturation value determined by a multiple linear regression Beer-Lambert absorbance model depended on the wavelength range chosen for analysis. The wavelength dependency on the calculated oxygen saturation value is due in part to the correlation that exists between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficient spectra and to errors in the assumptions built into the Beer-Lambert absorbance model. A wavelength region with low correlation between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficients was found that is hypothesized to be a good range to calculate oxygen saturation using a multiple linear regression approach.
|
7 |
The Influence of Red Blood Cell Scattering in Optical Pathways of Retinal Vessel OximetryLeBlanc, Serge E. 18 February 2011 (has links)
The ability to measure the oxygen saturation, oximetry, of retinal blood both non-invasively and in-vivo has been a goal of eye research for years. Retinal oximetry can in principle be achieved from the measurement of the reflectance spectrum of the ocular fundus. Oximetry calculations are however complicated by the scattering of red blood cells, the different pathways of light through blood and the ocular tissues that light interacts with before exiting the eye. The goal of this thesis was to investigate the influence of red blood cell scattering for different light paths relevant to retinal oximetry. Results of in-vitro whole blood experiments found calculated oxygen saturation differences between blood samples measured under different retinal light paths, and these differences did not depend on the absorbance path length. We also showed that the calculated oxygen saturation value determined by a multiple linear regression Beer-Lambert absorbance model depended on the wavelength range chosen for analysis. The wavelength dependency on the calculated oxygen saturation value is due in part to the correlation that exists between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficient spectra and to errors in the assumptions built into the Beer-Lambert absorbance model. A wavelength region with low correlation between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficients was found that is hypothesized to be a good range to calculate oxygen saturation using a multiple linear regression approach.
|
8 |
The Influence of Red Blood Cell Scattering in Optical Pathways of Retinal Vessel OximetryLeBlanc, Serge E. 18 February 2011 (has links)
The ability to measure the oxygen saturation, oximetry, of retinal blood both non-invasively and in-vivo has been a goal of eye research for years. Retinal oximetry can in principle be achieved from the measurement of the reflectance spectrum of the ocular fundus. Oximetry calculations are however complicated by the scattering of red blood cells, the different pathways of light through blood and the ocular tissues that light interacts with before exiting the eye. The goal of this thesis was to investigate the influence of red blood cell scattering for different light paths relevant to retinal oximetry. Results of in-vitro whole blood experiments found calculated oxygen saturation differences between blood samples measured under different retinal light paths, and these differences did not depend on the absorbance path length. We also showed that the calculated oxygen saturation value determined by a multiple linear regression Beer-Lambert absorbance model depended on the wavelength range chosen for analysis. The wavelength dependency on the calculated oxygen saturation value is due in part to the correlation that exists between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficient spectra and to errors in the assumptions built into the Beer-Lambert absorbance model. A wavelength region with low correlation between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficients was found that is hypothesized to be a good range to calculate oxygen saturation using a multiple linear regression approach.
|
9 |
The Influence of Red Blood Cell Scattering in Optical Pathways of Retinal Vessel OximetryLeBlanc, Serge E. January 2011 (has links)
The ability to measure the oxygen saturation, oximetry, of retinal blood both non-invasively and in-vivo has been a goal of eye research for years. Retinal oximetry can in principle be achieved from the measurement of the reflectance spectrum of the ocular fundus. Oximetry calculations are however complicated by the scattering of red blood cells, the different pathways of light through blood and the ocular tissues that light interacts with before exiting the eye. The goal of this thesis was to investigate the influence of red blood cell scattering for different light paths relevant to retinal oximetry. Results of in-vitro whole blood experiments found calculated oxygen saturation differences between blood samples measured under different retinal light paths, and these differences did not depend on the absorbance path length. We also showed that the calculated oxygen saturation value determined by a multiple linear regression Beer-Lambert absorbance model depended on the wavelength range chosen for analysis. The wavelength dependency on the calculated oxygen saturation value is due in part to the correlation that exists between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficient spectra and to errors in the assumptions built into the Beer-Lambert absorbance model. A wavelength region with low correlation between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficients was found that is hypothesized to be a good range to calculate oxygen saturation using a multiple linear regression approach.
|
10 |
Effects of cascading optical processes on quantification of sample scattering extinction, intensity, and depolarizationNawalage, Samadhi Nisansala 13 August 2024 (has links) (PDF)
Complex samples containing nanoscale or larger materials exhibit light scattering, a universal property of matter. However, the influence of scattering-induced cascading optical processes on quantifying sample scattering intensity and depolarization has not been thoroughly evaluated. This study uses polystyrene nanoparticles (PSNPs) as a model analyte for systematic experimental and computational investigation. It aims to elucidate the effects of cascading optical processes on scattering cross-section, molar coefficients, depolarization, and intensities. A theoretical model is introduced to show how the Beer-Lambert law is complicated by forward-scattered light interference in UV-Vis measurements. The dependence of scattering intensity on concentration and particle size is complex due to light scattering depolarization and inner filter effects (IFEs). Scattering depolarization increases with PSNP scattering extinction but levels off before unity, influenced by light polarization. Insights from this work enhance understanding of material characterization and nanoparticle quantification and clarify light scattering effects on absorption and fluorescence measurements.
|
Page generated in 0.0237 seconds