• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ULTRASHORT LASER PULSE PROPAGATION IN WATER

Byeon, Joong-Hyeok 16 January 2010 (has links)
We simulate ultrashort pulse propagation through water by numerical methods, which is a kind of optical communication research. Ultrashort pulses have been known to have non Beer-Lambert behavior, whereas continuous waves (CW) obey the Beer-Lambert law. People have expected that the ultrashort pulse loses less intensity for a given distance in water than CW which implies that the pulse can travel over longer distances. In order to understand this characteristic of the pulse, we model numerically its spectral and temporal evolution as a function of traveling distance through water. We achieve the pulse intensity attenuation with traveling distance, obtain the temporal envelope of the pulse and compare them with experimental data. This research proves that the spectral and temporal profile of a pulse can be predicted knowing only the intensity spectrum of the input pulse and the refractive index spectrum of water in the linear regime. The real feasibility and the advantage of using an ultrashort pulse as a communication carrier will also be discussed.
2

Modelo de calibração beta

CAVALCANTE, Mileno Tavares 31 January 2013 (has links)
Submitted by Danielle Karla Martins Silva (danielle.martins@ufpe.br) on 2015-03-12T12:55:45Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Cavalcante_2013_Modelo de Calibração Beta.pdf: 1287396 bytes, checksum: 4e58b1ff2a09bfb84e58587aa92cd49c (MD5) / Made available in DSpace on 2015-03-12T12:55:45Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Cavalcante_2013_Modelo de Calibração Beta.pdf: 1287396 bytes, checksum: 4e58b1ff2a09bfb84e58587aa92cd49c (MD5) Previous issue date: 2013 / O presente trabalho discute o problema de calibração em química analítica no contexto de não linearidade dos dados. A hipótese principal e que a media da variável resposta está restrita ao intervalo (0; 1) e pode ser modelada por uma distribuição beta, de modo similar ao modelo de regressão beta (Ferrari e Cribari-Neto, 2004). O objetivo _e propor uma extensão do modelo de regressão beta a estudos de calibração e verificar as propriedades de seu estimador para a concentração do analítico x comparativamente aos modelos linear e quadrático, que supõe resíduos normalmente distribuídos com variância constante. Aplicações a dados reais para os modelos considerados são apresentadas.
3

Μελέτη της απορρόφησης του φωτός από το ανθρώπινο δέρμα με σκοπό τη μέτρηση βιολογικών συντελεστών

Μανουσίδης, Ιωάννης 19 January 2010 (has links)
Τα τελευταία χρόνια, οι μη επεμβατικές μέθοδοι διάγνωσης αλλά και θεραπείας κερδίζουν συνεχώς έδαφος έναντι των παραδοσιακών επεμβατικών μεθόδων. Σκοπός της διπλωματικής αυτής εργασίας είναι η μελέτη της μετάδοσης του φωτός μέσα στο ανθρώπινο δέρμα και κυρίως η μελέτη της απορρόφησης που υφίσταται από αυτό, με σκοπό την μέτρηση βιολογικών συντελεστών, όπως οι συγκεντρώσεις κάποιων ουσιών στον οργανισμό, ο υπολογισμός των οποίων μπορεί να οδηγήσει σε χρήσιμα διαγνωστικά συμπεράσματα. Επίσης, αναλύεται η μέθοδος της παλμικής οξυμετρίας, που χρησιμοποιείται ευρύτατα για την παρακολούθηση του αρτηριακού κορεσμού οξυγόνου και του καρδιακού παλμού. Μετρώντας την απορρόφηση του φωτός σε δύο διαφορετικά μήκη κύματος, ένα στο ερυθρό (660 nm) και ένα στο εγγύς υπέρυθρο (940 nm), και απομονώνοντας το μεταβαλλόμενο μέρος αυτής, που οφείλεται στις διακυμάνσεις στον όγκο του αρτηριακού αίματος, μπορούμε να υπολογίσουμε με τη χρήση του νόμου των Beer-Lambert τον κορεσμό του αίματος σε οξυγόνο μέσω του υπολογισμού των συγκεντρώσεων του σε μειωμένη αιμογλοβίνη και σε οξυαιμογλοβίνη. Τέλος, περιγράφεται η υλοποίηση της μεθόδου και ο σχεδιασμός ενός παλμικού οξυμέτρου ενός chip με τη χρήση του μικροεπεξεργαστή MSP430. / Over recent years, non-invasive methods of diagnosis and treatment are gaining ground against the traditional invasive methods. In this thesis, an integrated review of the transfer of optical radiation into human skin and primarily light absorption through human skin is presented, aiming at measuring biological information, such as concentrations of certain substances in the human body, whose calculation can lead to useful diagnostic conclusions. The method of Pulse Oximetry, which is widely used for monitoring arterial oxygen saturation and heart rate of a patient, is also presented. By measuring the absorption of light at two different wavelengths, one red (660 nm) and one near-infrared (940 nm), and isolating its AC component, which is a result of the variations in the volume of arterial blood, we can calculate the oxygen saturation using the Beer-Lambert law, by estimating the concentrations of oxyhemoglobin and reduced hemoglobin. Moreover, the implementation of a single chip portable pulse oximeter using the ultra low power capability of the MSP430 is demonstrated.
4

Toward Computationally Efficient Models for Near-infrared and Photoacoustic Tomographic Imaging

Bhatt, Manish January 2016 (has links) (PDF)
Near Infrared (NIR) and Photoacoustic (PA) Imaging are promising imaging modalities that provides functional information of the soft biological tissues in-vivo, with applica-tions in breast and brain tissue imaging. These techniques use near infrared light in the wavelength range of (600 nm - 900 nm), giving an advantage of being non-ionizing imaging modality. This makes the prolong bed-side monitoring of tissue feasible, making them highly desirable medical imaging modalities in the clinic. The computation models that are deployed in these imaging scenarios are computationally demanding and often require a high performance computing systems to deploy them in real-time. This the-sis presents three computationally e cient models for near-infrared and photoacoustic imaging, without compromising the quality of measured functional properties, to make them more appealing in clinical scenarios. The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modi ed the BeerLambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concen-trations for NIR spectroscopic data analysis. Even though MBLL is e ective in terms of providing qualitative comparison, it su ers from its applicability across tissue types and tissue dimensions. A Lambert-W function-based modeling for light propagation in biological tissues is proposed and introduced, which is a generalized version of the Beer-Lambert model. The proposed modeling provides parametrization of tissue properties, which includes two attenuation coe cients o and . The model is validated against the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. Numerous human and animal tissues are included to validate the proposed empirical model, including an inhomogeneous adult human head model. The proposed model, which has a closed form (analytical), is rst of its kind in providing accurate modeling of NIR light propagation in biological tissues. Model based image reconstruction techniques yield better quantitative accuracy in photoacoustic (PA) image reconstruction, especially in limited data cases. An exponen-tial ltering of singular values is proposed for carrying out the image reconstruction in photoacoustic tomography. The results were compared with widely popular Tikhonov regularization, time reversal, and the state of the art least-squares QR based reconstruc-tion algorithms for three digital phantom cases with varying signal-to-noise ratios of data. The exponential ltering provided superior photoacoustic images of better quanti-tative accuracy. Moreover, the proposed ltering approach was observed to be less biased towards regularization parameter and did not come with any additional computational burden as it was implemented within the Tikhonov ltering framework. It was also shown that the standard Tikhonov ltering becomes an approximation to the proposed exponential ltering. The model based image reconstruction techniques for photoacoustic tomography re-quire an explicit regularization. An error estimate minimization based approach was proposed and developed for the determination of regularization parameter for PA imag-ing. The regularization was used within Lanczos bidiagonalization framework, which provides the advantage of dimensionality reduction for a large system of equations. The proposed method was computationally faster than the state of the art techniques and provided similar performance in terms of quantitative accuracy in reconstructed im-ages.The estimate can also be utilized in determining suitable regularization parameter for other popular techniques such as Tikhonov,exponential ltering and `1 norm based regularization methods.
5

Quantitative Measurement of Cerebral Hemodynamics During Activation of Auditory Cortex With Single- and Multi-Distance Near Infrared Spectroscopy

Mohammad, Penaz Parveen Sultana 29 June 2018 (has links)
Functional Near Infrared Spectroscopy (fNIRS) is a safe, low-cost, non-invasive opti-cal technique to monitor focal changes in brain activity using neurovascular coupling and measurements of local tissue oxygenation, i.e., changes in concentrations of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR)[42]. This thesis utilizes two fNIRS approaches to measure hemodynamic changes associated with functional stimulation of the human auditory cortex. The first approach, single-distance continuous wave NIRS (CW-NIRS) utilizes relatively simple instrumentation and the Modified-Beer Lambert (MBL) law to estimate activation induced changes in tissue oxygenation (∆CHbO and ∆CHbR)[17]. The second more complex approach, frequency domain NIRS (FD-NIRS), employs a photon diffusion model of light propagation through tissue to measure both baseline (CHbO and CHbR), and stimulus induced changes in oxygenated and deoxygenated hemoglobin[10]. FD-NIRS is more quantitative, but requires measurements at multiple light source-detector separations and thus its use in measuring focal changes in cerebral hemodynamics have been limited. A commercial FD-NIRS instrument was used to measure the cerebral hemodynamics from the right auditory cortex of 9 adults (21 ± 35 years) with normal hearing, while presented with two types of auditory stimuli: a 1000 Hz Pure tone, and Broad band noise. Measured optical intensities were analyzed using both MBL and photon diffusion approaches. Oxygenated hemoglobin was found to increase by 0.351 ± 0.116 µM and 0.060 ± 0.084 µM for Pure tone and Broad band noise stimuli, when analyzed by the MBL method at the ‘best’ source-detector separation. On average (across all sources), MBL analysis estimated an increase in CHbO of 0.100±0.075 µM and 0.099±0.084 µM respectively for Pure tone and Broad band noise stimulation. In contrast, the frequency domain analysis method estimated CHbO to increase by −0.401 ± 0.384 µM and −0.031 ± 0.358 µM for Pure tone and Broad band noise stimulation respectively. These results suggest that although more quantitative, multi-distance FD-NIRS may underestimate focal changes in cerebral hemodynamics that occur due to functional activation. Potential reasons for this discrepancy, including the partial volume effect, are discussed.
6

The Influence of Red Blood Cell Scattering in Optical Pathways of Retinal Vessel Oximetry

LeBlanc, Serge E. 18 February 2011 (has links)
The ability to measure the oxygen saturation, oximetry, of retinal blood both non-invasively and in-vivo has been a goal of eye research for years. Retinal oximetry can in principle be achieved from the measurement of the reflectance spectrum of the ocular fundus. Oximetry calculations are however complicated by the scattering of red blood cells, the different pathways of light through blood and the ocular tissues that light interacts with before exiting the eye. The goal of this thesis was to investigate the influence of red blood cell scattering for different light paths relevant to retinal oximetry. Results of in-vitro whole blood experiments found calculated oxygen saturation differences between blood samples measured under different retinal light paths, and these differences did not depend on the absorbance path length. We also showed that the calculated oxygen saturation value determined by a multiple linear regression Beer-Lambert absorbance model depended on the wavelength range chosen for analysis. The wavelength dependency on the calculated oxygen saturation value is due in part to the correlation that exists between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficient spectra and to errors in the assumptions built into the Beer-Lambert absorbance model. A wavelength region with low correlation between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficients was found that is hypothesized to be a good range to calculate oxygen saturation using a multiple linear regression approach.
7

The Influence of Red Blood Cell Scattering in Optical Pathways of Retinal Vessel Oximetry

LeBlanc, Serge E. 18 February 2011 (has links)
The ability to measure the oxygen saturation, oximetry, of retinal blood both non-invasively and in-vivo has been a goal of eye research for years. Retinal oximetry can in principle be achieved from the measurement of the reflectance spectrum of the ocular fundus. Oximetry calculations are however complicated by the scattering of red blood cells, the different pathways of light through blood and the ocular tissues that light interacts with before exiting the eye. The goal of this thesis was to investigate the influence of red blood cell scattering for different light paths relevant to retinal oximetry. Results of in-vitro whole blood experiments found calculated oxygen saturation differences between blood samples measured under different retinal light paths, and these differences did not depend on the absorbance path length. We also showed that the calculated oxygen saturation value determined by a multiple linear regression Beer-Lambert absorbance model depended on the wavelength range chosen for analysis. The wavelength dependency on the calculated oxygen saturation value is due in part to the correlation that exists between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficient spectra and to errors in the assumptions built into the Beer-Lambert absorbance model. A wavelength region with low correlation between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficients was found that is hypothesized to be a good range to calculate oxygen saturation using a multiple linear regression approach.
8

The Influence of Red Blood Cell Scattering in Optical Pathways of Retinal Vessel Oximetry

LeBlanc, Serge E. 18 February 2011 (has links)
The ability to measure the oxygen saturation, oximetry, of retinal blood both non-invasively and in-vivo has been a goal of eye research for years. Retinal oximetry can in principle be achieved from the measurement of the reflectance spectrum of the ocular fundus. Oximetry calculations are however complicated by the scattering of red blood cells, the different pathways of light through blood and the ocular tissues that light interacts with before exiting the eye. The goal of this thesis was to investigate the influence of red blood cell scattering for different light paths relevant to retinal oximetry. Results of in-vitro whole blood experiments found calculated oxygen saturation differences between blood samples measured under different retinal light paths, and these differences did not depend on the absorbance path length. We also showed that the calculated oxygen saturation value determined by a multiple linear regression Beer-Lambert absorbance model depended on the wavelength range chosen for analysis. The wavelength dependency on the calculated oxygen saturation value is due in part to the correlation that exists between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficient spectra and to errors in the assumptions built into the Beer-Lambert absorbance model. A wavelength region with low correlation between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficients was found that is hypothesized to be a good range to calculate oxygen saturation using a multiple linear regression approach.
9

The Influence of Red Blood Cell Scattering in Optical Pathways of Retinal Vessel Oximetry

LeBlanc, Serge E. January 2011 (has links)
The ability to measure the oxygen saturation, oximetry, of retinal blood both non-invasively and in-vivo has been a goal of eye research for years. Retinal oximetry can in principle be achieved from the measurement of the reflectance spectrum of the ocular fundus. Oximetry calculations are however complicated by the scattering of red blood cells, the different pathways of light through blood and the ocular tissues that light interacts with before exiting the eye. The goal of this thesis was to investigate the influence of red blood cell scattering for different light paths relevant to retinal oximetry. Results of in-vitro whole blood experiments found calculated oxygen saturation differences between blood samples measured under different retinal light paths, and these differences did not depend on the absorbance path length. We also showed that the calculated oxygen saturation value determined by a multiple linear regression Beer-Lambert absorbance model depended on the wavelength range chosen for analysis. The wavelength dependency on the calculated oxygen saturation value is due in part to the correlation that exists between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficient spectra and to errors in the assumptions built into the Beer-Lambert absorbance model. A wavelength region with low correlation between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficients was found that is hypothesized to be a good range to calculate oxygen saturation using a multiple linear regression approach.
10

Secção de choque total absoluta do espalhamento de elétrons por Metanol e Etanol

Silva, Daniel Gustavo Mesquita da 06 April 2009 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-09T15:24:44Z No. of bitstreams: 1 danielgustavomesquitadasilva.pdf: 1286713 bytes, checksum: 02c113ea7352199324c4ee67f18311bf (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-29T12:06:17Z (GMT) No. of bitstreams: 1 danielgustavomesquitadasilva.pdf: 1286713 bytes, checksum: 02c113ea7352199324c4ee67f18311bf (MD5) / Made available in DSpace on 2017-06-29T12:06:17Z (GMT). No. of bitstreams: 1 danielgustavomesquitadasilva.pdf: 1286713 bytes, checksum: 02c113ea7352199324c4ee67f18311bf (MD5) Previous issue date: 2009-04-06 / Neste trabalho foram obtidas Secções de Choque Totais Absolutas (SCTA) para moléculas de Etanol e Metanol utilizando um aparelho desenvolvido no Laboratório de Espectroscopia Atômica e Molecular do DF/UFJF, que emprega a técnica de transmissão linear. As medidas foram realizadas para o Metanol e Etanol cobrindo as energias de impacto de 70, 80, 90, 100, 150, 200, 250, 300, 350, 400 e 500 eV e também de 60 eV para o Etanol. A resolução de energia em todas as medidas foi de 0,6 eV (FWHM) e a incerteza no cálculo das SCTs foi estimada em 5%. A faixa de pressão na célula de espalhamento foi mantida entre 1 a 4mTorr. Os elétrons que sofreram processos de colisões inelásticas podem ser descriminados daqueles que não sofreram nenhum processo de interação com o alvo por um analisador cilíndrico dispersivo 127º, que tem a finalidade de selecionar os elétrons que serão detectados pelo Coletor de Faraday. Medindo a intensidade do feixe de elétrons atenuados, a SCTA pode ser obtida aplicando a Lei de Lambert Beer. Os dados foram obtidos através de um procedimento estatístico envolvendo uma série de 4 a 7 sessões de medidas, os valores obtidos foram utilizados para encontrar a SCT para uma determinada energia definida. Além das medidas experimentais, nós determinamos SCT utilizando a Regra da Aditividade. Nós também avaliamos nossos dados experimentais usando uma fórmula de dois parâmetros (Curva de Born) para cada gás. Nossos dados experimentais concordam com a maioria dos dados publicados na literatura. Não existem dados reportados na literatura de SCT para a molécula do Etanol (C2H5OH). / We have measured the absolute Total Cross Section (TCS) for methanol and ethanol molecules using an apparatus manufactured at the Molecular Spectroscopy Laboratory at DF/UFJF, which employ the linear transmission technique. The experimental data were taken at incident electron energies of 70, 80, 90, 100, 150, 200, 250, 300, 350, 400 and 500 eV for methanol and ethanol and also of 60 eV for ethanol. The energy resolution in all measurements was 0,6 eV (FWHM) and the overall systematic uncertainty at the TCS were evaluated to be less than 5%. The pressure range in the scattering cell was chosen between 1 and 4mTorr. Those electrons which passed the exit orifice of the chamber were discriminated with a 127o cylindrical energy selector coupled with an entrance set of electrostatic lenses and detected by a Faraday cup. Measuring the attenuation of intensity of the projectile-particle beam transmitted through the target volume, the absolute TCS for a given impact energy was derived from the Beer-Lambert law. The measurements were carried out for a given energy in a series of alt least 4 runs, each one taking at least 7 values and an averaging procedure was applied to derive the final total cross section at a particular energy. Besides the experimental measurements, we have additionally determined TCS using the Additivity Rule. We have also evaluated our experimental data using a fitting procedure with the Born-like formula containing two parameters for each gas. Our experimental data are in good agreement with the majority of previous measurements published in the literature. There are no previous reports of experimental electron scattering Total Cross Section C2H5OH in the literature.

Page generated in 0.0348 seconds