• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Reported Use of Equivalence-Based Instruction Among Practicing Behavior Analysts

North, Cody 14 December 2022 (has links)
No description available.
12

Influence de la dépendance au champ visuel dans la construction et le maintien d’une posture verticale inversée en milieux terrestres et aquatiques / Influence of visual field dependence in building and maintaining an upside-down posture in terrestrial and aquatic environments

Counil, Lou 07 December 2012 (has links)
La contribution relative des différentes entrées sensorielles dans le contrôle postural a souvent été étudiée dans le cadre de la posture érigée fondamentale. L’objectif de nos travaux a été de déterminer cette contribution dans deux postures relativement proches dans leur configuration : l’appui tendu renversé (ATR) et la verticale inversée (VI) en milieu aquatique. Si la vision est souvent considérée comme information principale dans le contrôle postural de la station érigée, la configuration structurelle (champ visuel restreint en ATR, immersion de l’œil en VI) de ces deux postures laisse imaginer un fonctionnement différent. La perturbation des différents capteurs sensoriels impliqués dans le contrôle postural a permis d’observer la réorganisation mise en place par le système nerveux central (SNC) pour y remédier. De plus la prise en compte d’un facteur perceptif comme la dépendance au champ visuel nous a paru être un élément pertinent pour tenter d’observer d’éventuelles différences interindividuelles dans les comportements des sujets. La perturbation du contrôle postural a été évaluée au travers d’une analyse cinématique et d’une analyse stabilométrique de l’ATR (analyse classique et non-linéaire). Les résultats de ces analyses laissent entrevoir des différences de stratégie entre les sujets dépendants et indépendants au champ visuel dans le contrôle de l’appui tendu renversé, ce qui ne semble pas être le cas en verticale inversée / The relative contribution of the different sensory inputs in erect postural control has often been studied. The aim of this work is to determine this contribution in two positions relatively close in their configuration: the handstand and the upside-down posture in water. If vision is often considered as the main information in postural control, the structural configuration (restricted visual field in handstand, eye’s immersion in upside-down posture) of these two postures lets imagine a different operation. Disruption of sensory receptors involved in postural control has allowed observing the reorganization implemented by the central nervous system (CNS). In addition, the visual field dependence appeared to be a relevant factor to observe interindividual behavioral differences. Disturbance of postural control was assessed through a kinematic analysis and a stabilometric analysis of the handstand (classical analysis and non-linear analysis). Results of these analyzes suggest different strategy according to visual field dependence in the control of the handstand, which does not seem to be the case in upside-down posture
13

Bond behavior of cement-based repair materials under freeze-thaw and cyclic loading conditions

Wang, Boyu 22 April 2022 (has links)
According to the 2019 Canadian infrastructure report card, a concerning amount of municipal infrastructure is in poor or very poor condition. The infrastructure in this condition requires immediate action for rehabilitation or replacement. For concrete infrastructure, an effective repair can extend its service life and ensure that the services it provides continue to meet the community expectations. However, unfavorable environmental factors such as repeated/cyclic loads and freezing and thawing cycles adversely affect the bond between substrate concrete and repair materials, which lowers the structural capacity of repaired structures. So far, researchers have found that bond strength of repair can be affected by surface roughness, surface moisture, chemical adhesion or cohesion, curing regime, properties of substrate and repair materials, use of bond agent, and curing regimes. These findings are mostly based on the studies that focused on cold-jointed cylinders or beams, but in real-life repair situations, repairs of beams or slabs are located at either tension or compression side of the structure. Currently, there is no comprehensive study that investigates the bond of concrete repair under a combination of freezing and thawing and repeated/cyclic loading conditions. In addition, it is challenging to provide a rapid and non-destructive evaluation of the bond deterioration of repair materials. To address these issues systematically, this dissertation breaks the task into four phases. Phase (I) focuses on the development of an engineered “crack-free” repair mix that contains polypropylene (PP) fiber. A novel method is used to surface treat the PP fibers with supplementary cementitious materials. The effectiveness of surface-treating fibers for improved bond strength and reduced cracking is investigated. The compressive, tensile, and flexural strength of this engineered repair mix are determined and compared with two commercially available repair materials. The results from Phase I show that by adding 0.2% (by weight) Metakaolin-treated fibers into concrete mix, the compressive strength improves by up to 15.7% compared to mixes with untreated fibers. This study achieved a strength increase of 13.5% as compared to the reported 3.3% in other studies that use 25 times the amount of metakaolin used in this study. The experimental results confirm that at 0.2% dosage level, the use of novel surface treating technique is a cost-effective way to improve the strength of repair materials. Phase (II) focuses on characterizing the bond strength of various repair systems after freezing-thawing (FT) damage using both non-destructive and destructive methods. Two innovative sounding methods, which overcome the subjectivity of the traditional chain drag method, are used to evaluate FT damage non-destructively. In the experimental study, beams with a U-shaped cut are made to simulate conditions experienced by a concrete structure during a typical repair project. Three types of repair materials are used including cementitious repair concrete, cementitious repair mortar, and polymer-modified cementitious mortar. After up to 300 cycles of freeze-thaw exposure, resonant frequency and bond flexural strength of the prismatic specimens are determined. The empirical equations relating Non-destructive test (NDT) measurements and flexural bond strength of the repaired structures after freeze-thaw (FT) exposure are proposed. The results from Phase II show that the change in dynamic modulus of elasticity determined from NDTs agrees well with the change in other measurements including flexural bond strength, interfacial crack width, and mass loss after freeze-thaw exposure. In this study, linear relationships are established between dynamic modulus of elasticity and flexural bond strength for both cementitious and polymer-modified cementitious repair mortar with a coefficient of determination ranging between 0.87 and 0.95. The proposed empirical models can be used to predict bond flexural strength of repaired structures based on NDT measurement. Also, it was found that the samples repaired with polymer-modified cementitious mortar (Mix P) have superior FT resistance compared to other repaired samples. Phase (III) focuses on investigating the structural capacity and bond performance of repaired beams after cyclic/repeated loading. To accelerate the test process, a novel modified loading regime consisting of cycle groups of increasing cyclic/repeated stress amplitude is proposed. The models proposed by literature and current codes and standards are used to validate the results. Phase (IV) focuses on the development of the damage models for both individual and combined FT and cyclic loading exposure on repaired concrete structures. The results in phase III show the feasibility of using the Palmgren-Miner rule and Goodman linear model to estimate the fatigue life of repaired structures. This was confirmed within the context of this study. This study established the usefulness of using groups of increasing cyclic stress amplitude to accelerate the fatigue test process. The two-million cycle fatigue endurance limit estimated using cycle groups of Mix S (70.8%) was very similar to what was reported in the literature (71%) using the traditional time-consuming cyclic loading method. This study found that the formulas proposed by CSA 23.3 can effectively predict the moment resistance of both intact (control) and repaired RC beams. The ratio of experimental moment resistance values to its predictions ranges from 0.91 to 1.04. Based on the experimental results of previous three phases, an empirical model that predicted the fatigue service life of FT-damaged concrete structures is proposed. Future research requires a more comprehensive study on the FT performance of various polymer-modified cementitious mortars of different mix designs in repairing concrete structures. By increasing the number of tested specimens, a better relationship could be established between destructive and NDT methods. Future research is also required to explore the combined effect of FT and cyclic loading on repaired RC structures experimentally. / Graduate / 2023-03-22

Page generated in 0.0205 seconds