• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Segmentation d'objets mobiles par fusion RGB-D et invariance colorimétrique / Mooving objects segmentation by RGB-D fusion and color constancy

Murgia, Julian 24 May 2016 (has links)
Cette thèse s'inscrit dans un cadre de vidéo-surveillance, et s'intéresse plus précisément à la détection robustesd'objets mobiles dans une séquence d'images. Une bonne détection d'objets mobiles est un prérequis indispensableà tout traitement appliqué à ces objets dans de nombreuses applications telles que le suivi de voitures ou depersonnes, le comptage des passagers de transports en commun, la détection de situations dangereuses dans desenvironnements spécifiques (passages à niveau, passages piéton, carrefours, etc.), ou encore le contrôle devéhicules autonomes. Un très grand nombre de ces applications utilise un système de vision par ordinateur. Lafiabilité de ces systèmes demande une robustesse importante face à des conditions parfois difficiles souventcausées par les conditions d'illumination (jour/nuit, ombres portées), les conditions météorologiques (pluie, vent,neige) ainsi que la topologie même de la scène observée (occultations). Les travaux présentés dans cette thèsevisent à améliorer la qualité de détection d'objets mobiles en milieu intérieur ou extérieur, et à tout moment de lajournée.Pour ce faire, nous avons proposé trois stratégies combinables :i) l'utilisation d'invariants colorimétriques et/ou d'espaces de représentation couleur présentant des propriétésinvariantes ;ii) l'utilisation d'une caméra stéréoscopique et d'une caméra active Microsoft Kinect en plus de la caméra couleurafin de reconstruire l'environnement 3D partiel de la scène, et de fournir une dimension supplémentaire, à savoirune information de profondeur, à l'algorithme de détection d'objets mobiles pour la caractérisation des pixels ;iii) la proposition d'un nouvel algorithme de fusion basé sur la logique floue permettant de combiner les informationsde couleur et de profondeur tout en accordant une certaine marge d'incertitude quant à l'appartenance du pixel aufond ou à un objet mobile. / This PhD thesis falls within the scope of video-surveillance, and more precisely focuses on the detection of movingobjects in image sequences. In many applications, good detection of moving objects is an indispensable prerequisiteto any treatment applied to these objects such as people or cars tracking, passengers counting, detection ofdangerous situations in specific environments (level crossings, pedestrian crossings, intersections, etc.), or controlof autonomous vehicles. The reliability of computer vision based systems require robustness against difficultconditions often caused by lighting conditions (day/night, shadows), weather conditions (rain, wind, snow...) and thetopology of the observed scene (occultation...).Works detailed in this PhD thesis aim at reducing the impact of illumination conditions by improving the quality of thedetection of mobile objects in indoor or outdoor environments and at any time of the day. Thus, we propose threestrategies working as a combination to improve the detection of moving objects:i) using colorimetric invariants and/or color spaces that provide invariant properties ;ii) using passive stereoscopic camera (in outdoor environments) and Microsoft Kinect active camera (in outdoorenvironments) in order to partially reconstruct the 3D environment, providing an additional dimension (a depthinformation) to the background/foreground subtraction algorithm ;iii) a new fusion algorithm based on fuzzy logic in order to combine color and depth information with a certain level ofuncertainty for the pixels classification.
2

Système complet d’acquisition vidéo, de suivi de trajectoires et de modélisation comportementale pour des environnements 3D naturellement encombrés : application à la surveillance apicole / Full process of acquisition, multi-target tracking, behavioral modeling for naturally crowded environments : application to beehives monitoring

Chiron, Guillaume 28 November 2014 (has links)
Ce manuscrit propose une approche méthodologique pour la constitution d’une chaîne complète de vidéosurveillance pour des environnements naturellement encombrés. Nous identifions et levons un certain nombre de verrous méthodologiques et technologiques inhérents : 1) à l’acquisition de séquences vidéo en milieu naturel, 2) au traitement d’images, 3) au suivi multi-cibles, 4) à la découverte et la modélisation de motifs comportementaux récurrents, et 5) à la fusion de données. Le contexte applicatif de nos travaux est la surveillance apicole, et en particulier, l’étude des trajectoires des abeilles en vol devant la ruche. De ce fait, cette thèse se présente également comme une étude de faisabilité et de prototypage dans le cadre des deux projets interdisciplinaires EPERAS et RISQAPI (projets menées en collaboration avec l’INRA Magneraud et le Muséum National d’Histoire Naturelle). Il s’agit pour nous informaticiens et pour les biologistes qui nous ont accompagnés, d’un domaine d’investigation totalement nouveau, pour lequel les connaissances métiers, généralement essentielles à ce genre d’applications, restent encore à définir. Contrairement aux approches existantes de suivi d’insectes, nous proposons de nous attaquer au problème dans l’espace à trois dimensions grâce à l’utilisation d’une caméra stéréovision haute fréquence. Dans ce contexte, nous détaillons notre nouvelle méthode de détection de cibles appelée segmentation HIDS. Concernant le calcul des trajectoires, nous explorons plusieurs approches de suivi de cibles, s’appuyant sur plus ou moins d’a priori, susceptibles de supporter les conditions extrêmes de l’application (e.g. cibles nombreuses, de petite taille, présentant un mouvement chaotique). Une fois les trajectoires collectées, nous les organisons selon une structure de données hiérarchique et mettons en œuvre une approche Bayésienne non-paramétrique pour la découverte de comportements émergents au sein de la colonie d’insectes. L’analyse exploratoire des trajectoires issues de la scène encombrée s’effectue par classification non supervisée, simultanément sur des niveaux sémantiques différents, et où le nombre de clusters pour chaque niveau n’est pas défini a priori mais est estimé à partir des données. Cette approche est dans un premier temps validée à l’aide d’une pseudo-vérité terrain générée par un Système Multi-Agents, puis dans un deuxième temps appliquée sur des données réelles. / This manuscript provides the basis for a complete chain of videosurveillence for naturally cluttered environments. In the latter, we identify and solve the wide spectrum of methodological and technological barriers inherent to : 1) the acquisition of video sequences in natural conditions, 2) the image processing problems, 3) the multi-target tracking ambiguities, 4) the discovery and the modeling of recurring behavioral patterns, and 5) the data fusion. The application context of our work is the monitoring of honeybees, and in particular the study of the trajectories bees in flight in front of their hive. In fact, this thesis is part a feasibility and prototyping study carried by the two interdisciplinary projects EPERAS and RISQAPI (projects undertaken in collaboration with INRA institute and the French National Museum of Natural History). It is for us, computer scientists, and for biologists who accompanied us, a completely new area of investigation for which the scientific knowledge, usually essential for such applications, are still in their infancy. Unlike existing approaches for monitoring insects, we propose to tackle the problem in the three-dimensional space through the use of a high frequency stereo camera. In this context, we detail our new target detection method which we called HIDS segmentation. Concerning the computation of trajectories, we explored several tracking approaches, relying on more or less a priori, which are able to deal with the extreme conditions of the application (e.g. many targets, small in size, following chaotic movements). Once the trajectories are collected, we organize them according to a given hierarchical data structure and apply a Bayesian nonparametric approach for discovering emergent behaviors within the colony of insects. The exploratory analysis of the trajectories generated by the crowded scene is performed following an unsupervised classification method simultaneously over different levels of semantic, and where the number of clusters for each level is not defined a priori, but rather estimated from the data only. This approach is has been validated thanks to a ground truth generated by a Multi-Agent System. Then we tested it in the context of real data.

Page generated in 0.0903 seconds