1 |
Design and Manufacturing of a Rotationally Symmetric Cold Gas Nozzle in SiliconVargas Catalan, Ernesto January 2012 (has links)
In this master thesis, the goal was to devise design patterns and a fabrication processfor manufacturing a 3-D rotationally symmetric converging-diverging cold gasmicronozzle in silicon.The report explains the theory of etching and the methods involved. The work beginswith calculations and simulations of the etching processes. The chosen etch techniqueutilizes so called microloading and reactive ion etching lag effects, which essentially arephenomena where the etch rate can be adjusted by breaking up mask features intosubpatterns, and the etch depth for a given recipe and time can be made to differlocally. The subpatterns consisted of very small rectangles and triangles withalternating concentration. Five different recipes for the reactive ion etching weretried, where the coil power, platen power, pressure, temperature and time wasvaried.Etch rates could be made to differ locally depending on the concentration ofsubpatterns within the mask feature. The etch rates were also affected by the recipeparameters such as coil power, platen power, and pressure. High coil and platenpower increased the etch rate, while high pressure reduced the etch rate. The platenpower also affected the surface roughness.A solution for reducing misalignment problems in the future for the fusion bondingprocess resulted in the proposed moiré patterns that were made to showmisalignments down to 0.2 μm.Through scanning electron microscopy, the Nozzle 5_4_2 was concluded to have themost rotationally symmetric cross section at both the throat and the outlet. It hasthroat diameter of 31.1 μm with a depth of 34.2 μm and an outlet diameter of146.4 μm with a depth of 113.2 μm
|
2 |
Fabrication of Three-Dimensionally Independent Microchannels Using a Single Mask Aimed at On-Chip Microprocessor CoolingGantz, Kevin Francis 17 January 2008 (has links)
A novel fabrication process is presented which allows for three-dimensionally independent features to be etched in silicon using SF6 gas in a deep reactive ion etcher (DRIE) after a single etch step. The mechanism allowing for different feature depths and widths to be produced over a wafer is reactive ion etch lag, where etch rate scales with the exposed feature size in the mask. A modified Langmuir model has been developed relating the geometry of the exposed areas in a specific mask pattern as well as the etch duration to the final depth and width of a channel that is produced after isotropic silicon etching. This fabrication process is tailored for microfluidic network design, but the capabilities of the process can be applied elsewhere. A characterization of an Alcatel DRIE tool is also presented in order to enhance RIE lag by varying etch process parameters, increasing the variety of channel sizes that can be fabricated. High values of flow rate, coil power, and pressure were found to produce this effect. The capability of the modeled process for creating a microchip cooling device for high-heat flux applications was also investigated. Using meander channels, heat flux in excess of 100W/cm2 were cooled using 750µL/s flow rate of water through the chip. This single-mask process reduces risk of damage to the chip and provides the capability to cool high-heat-flux microprocessors for the next 10 years, and for an even longer time once the geometry of the channels is optimized. / Master of Science
|
Page generated in 0.0477 seconds