1 |
Error Analysis of RKDG Methods for 1-D Hyperbolic Conservation LawsRumsey, David 26 March 2012 (has links)
No description available.
|
2 |
A Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid (RKDG-DGF) Method to Near-field Early-time Underwater Explosion (UNDEX) SimulationsPark, Jinwon 22 September 2008 (has links)
A coupled solution approach is presented for numerically simulating a near-field underwater explosion (UNDEX). An UNDEX consists of a complicated sequence of events over a wide range of time scales. Due to the complex physics, separate simulations for near/far-field and early/late-time are common in practice. This work focuses on near-field early-time UNDEX simulations. Using the assumption of compressible, inviscid and adiabatic flow, the fluid flow is governed by a set of Euler fluid equations. In practical simulations, we often encounter computational difficulties that include large displacements, shocks, multi-fluid flows with cavitation, spurious waves reflecting from boundaries and fluid-structure coupling. Existing methods and codes are not able to simultaneously consider all of these characteristics.
A robust numerical method that is capable of treating large displacements, capturing shocks, handling two-fluid flows with cavitation, imposing non-reflecting boundary conditions (NRBC) and allowing the movement of fluid grids is required. This method is developed by combining numerical techniques that include a high-order accurate numerical method with a shock capturing scheme, a multi-fluid method to handle explosive gas-water flows and cavitating flows, and an Arbitrary Lagrangian Eulerian (ALE) deformable fluid mesh. These combined approaches are unique for numerically simulating various near-field UNDEX phenomena within a robust single framework. A review of the literature indicates that a fully coupled methodology with all of these characteristics for near-field UNDEX phenomena has not yet been developed.
A set of governing equations in the ALE description is discretized by a Runge Kutta Discontinuous Galerkin (RKDG) method. For multi-fluid flows, a Direct Ghost Fluid (DGF) Method coupled with the Level Set (LS) interface method is incorporated in the RKDG framework. The combination of RKDG and DGF methods (RKDG-DGF) is the main contribution of this work which improves the quality and stability of near-field UNDEX flow simulations. Unlike other methods, this method is simpler to apply for various UNDEX applications and easier to extend to multi-dimensions. / Ph. D.
|
Page generated in 0.0192 seconds