• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Quasi-Uniformity Condition and Three-Dimensional Geometry Representation as it Applies to the Reproducing Kernel Element Method

Collier, Nathaniel O 25 March 2009 (has links)
The Reproducing Kernel Element Method (RKEM) is a hybrid between finite elements and meshfree methods that provides shape functions of arbitrary order and continuity yet retains the Kronecker-delta property. To achieve these properties, the underlying mesh must meet certain regularity constraints, unique to RKEM. The aim of this dissertation is to develop a precise definition of these constraints, and a general algorithm for assessing a mesh is developed. This check is a critical step in the use of RKEM in any application. The general checking algorithm is made more specific to apply to two-dimensional triangular meshes with circular supports and to three-dimensional tetrahedral meshes with spherical supports. The checking algorithm features the output of the uncovered regions that are used to develop a mesh-mending technique for fixing offending meshes. The specific check is used in conjunction with standard quality meshing techniques to produce meshes suitable for use with RKEM. The RKEM quasi-uniformity definitions enable the use of RKEM in solving Galerkin weak forms as well as in general interpolation applications, such as the representation of geometries. A procedure for determining a RKEM representation of discrete point sets is presented with results for surfaces in three-dimensions. This capability is important to the analysis of geometries such as patient-specific organs or other biological objects.

Page generated in 0.024 seconds