• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Versatile and Antique World of RNA : The Simplicity of RNA Mediated Catalysis

Kikovska, Ema January 2007 (has links)
<p>RNA is the only biological molecule that can function both as a repository of information and as a catalyst. This, together with the ability to self-replicate, led to recognition of RNA as ‘prelude to life’.</p><p>My work highlights some of the important features of RNA as a catalyst, exemplified by RNase P. It addresses questions of evolutionary preservations of residues and structure, involvement of metal ions and finally structure evolution towards minimal catalytically competent RNA motifs.</p><p>RNase P is the only enzyme involved in 5’ end processing of all pre-tRNAs. Until recently, it was believed that the RNA moiety of RNase P is responsible for mediating catalysis only in Bacteria. However, my recent study conclusively demonstrated that eukaryotic RNase P RNA is catalytically competent in vitro in absence of proteins. These findings evidenced evolutionary preservation of RNA-mediated catalysis in RNase P.</p><p>RNase P RNA is a metalloeznyme. In my studies I analyzed the contributions of individual chemical groups at the cleavage site to catalysis. My findings suggested that the 2’OH of N<sub>-1</sub> and the exocyclic amine of G<sub>+1</sub> are involved in positioning of functionally important metal ions. Additionally, data appointed the function of Pb<sup>2+</sup> as both structural metal ion and important in generating the nucleophile. My studies further indicate a conformational change upon RNase P RNA -substrate complex formation in keeping with an induced fit mechanism. </p><p>Studying the effects of reducing the ribozyme size upon dissection of bacterial RNase P RNAs, we defined the smallest catalytically competent domain i.e. P15-loop. Derivatives of this autonomous metal ion binding domain, (the smallest being 31nt-s), are able to cleave both whole-length pre-tRNAs as well as hairpin substrates, though with severely reduced rates relative to their parent ribozymes. The study has inferred that partite ES interactions at the cleavage site prove sufficient for catalysis.</p>
2

Versatile and Antique World of RNA : The Simplicity of RNA Mediated Catalysis

Kikovska, Ema January 2007 (has links)
RNA is the only biological molecule that can function both as a repository of information and as a catalyst. This, together with the ability to self-replicate, led to recognition of RNA as ‘prelude to life’. My work highlights some of the important features of RNA as a catalyst, exemplified by RNase P. It addresses questions of evolutionary preservations of residues and structure, involvement of metal ions and finally structure evolution towards minimal catalytically competent RNA motifs. RNase P is the only enzyme involved in 5’ end processing of all pre-tRNAs. Until recently, it was believed that the RNA moiety of RNase P is responsible for mediating catalysis only in Bacteria. However, my recent study conclusively demonstrated that eukaryotic RNase P RNA is catalytically competent in vitro in absence of proteins. These findings evidenced evolutionary preservation of RNA-mediated catalysis in RNase P. RNase P RNA is a metalloeznyme. In my studies I analyzed the contributions of individual chemical groups at the cleavage site to catalysis. My findings suggested that the 2’OH of N-1 and the exocyclic amine of G+1 are involved in positioning of functionally important metal ions. Additionally, data appointed the function of Pb2+ as both structural metal ion and important in generating the nucleophile. My studies further indicate a conformational change upon RNase P RNA -substrate complex formation in keeping with an induced fit mechanism. Studying the effects of reducing the ribozyme size upon dissection of bacterial RNase P RNAs, we defined the smallest catalytically competent domain i.e. P15-loop. Derivatives of this autonomous metal ion binding domain, (the smallest being 31nt-s), are able to cleave both whole-length pre-tRNAs as well as hairpin substrates, though with severely reduced rates relative to their parent ribozymes. The study has inferred that partite ES interactions at the cleavage site prove sufficient for catalysis.
3

Use of fluorescence resonance energy transfer (FRET) to elucidate structure-function relationships in archaeal RNase P, a multi-subunit catalytic ribonucleoprotein

Marathe, Ila Abhijit January 2021 (has links)
No description available.
4

Metallobiochemistry of RNA: Mg(II) and Fe(II) in divalent binding sites

Okafor, Chiamaka Denise 21 September 2015 (has links)
Cations are essential for ribonucleic acids (RNA), as they neutralize the negatively charged phosphate backbone. Divalent metals play important roles in the folding and function of RNA. The relationship between RNA and divalent cations magnesium (Mg(II)) and iron (Fe(II)) has been investigated. Mg(II) is involved in tertiary interactions of many large RNAs, and necessary for ribozyme activity. The influence of Mg(II) on RNA secondary and tertiary structure is investigated experimentally. Mg(II) binding to A-form RNA is accompanied by changes in CD spectra, indicating that Mg-RNA interactions influence the helical structure of RNA duplexes and helical regions of unfolded RNAs. Quantum mechanics calculations are used to probe the energetics of Mg(II)-chelation with phosphate oxygen atoms of nucleic acids. We identify the specific forces that contribute to stability of Mg(II)-chelation complexes in RNA. Fe(II) can serve as a substitute for Mg(II) in RNA folding and function. Fe(II) was abundant on early earth, it is plausible that RNA folding and function was mediated by Fe(II) instead of, or in combination with, Mg(II) in the anoxic environment of early earth. We have investigated oxidoreductase catalytic activity observed in RNA when in combination with Fe(II). This activity, only observed in the presence of Fe(II) and absence of Mg(II)appears to be a resurrection of ancient RNA capabilities that were extinguished upon the depletion of Fe(II) from the environment during the rise of oxygen after the great oxidation event. Finally, metal-ion based cleavage of RNA is used to identify the binding sites of Mg(II) and Fe(II). We observe that both metals cleave RNA in similar positions, providing further support for Fe(II) as a substitute for Mg(II) in RNA.

Page generated in 0.0279 seconds