Spelling suggestions: "subject:"RNA polymerase II transcription"" "subject:"RNA olymerase II transcription""
1 |
Mechanisms of transcription by RNA Polymerase II /Ranish, Jeffrey A., January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves [110]-121).
|
2 |
Functional characterization of the Paf1 complex in Saccharomyces cerevisiae by identification of Paf1 target genes /Penheiter, Kristi L. January 2005 (has links)
Thesis (Ph.D. in Molecular Biology) -- University of Colorado at Denver and Health Sciences Center, 2005. / Typescript. Includes bibliographical references (leaves 126-149). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
|
3 |
Investigating the role and regulation of mRNA capping in pluripotency and differentiationSuska, Olga January 2017 (has links)
The mRNA cap added to the 5’ end of nascent transcripts is required for the efficient gene expression in eukaryotes. In vertebrates, the guanosine cap is methylated at N7 position by RNMT, which is in complex with its activating subunit RAM. Additionally, the first and second transcribed nucleotides can be methylated at ribose O2 position by CMTR1 and CMTR2 respectively. The mRNA cap protects transcripts from degradation and recruits cap-binding factors to promote pre-mRNA processing, nuclear export and translation initiation. In mouse embryonic stem cells (mESCs), high levels of RAM maintain expression of pluripotency factors. Differentiation of mESCs to neural progenitors is accompanied by a suppression of RAM, resulting in downregulation of pluripotency factors and efficient formation of neural cells. Here, I demonstrated that the suppression of RAM during neural differentiation is promoted via ubiquitination and proteasomal degradation. Concurrently, neural differentiation is associated with an increase in CMTR1 expression, creating a developmental cap methyltransferase switch. Moreover, differentiation into endodermal and mesodermal lineages exhibited distinct changes in the mRNA capping enzymes expression. In mESCs, RAM promotes expression of translation-associated proteins and promotes global loading of mRNA on ribosomes. RAM contributes to the ESC-specific gene expression program, by maintaining optimal expression of pluripotency-associated transcripts and inhibiting expression of neural genes. Chromatin immunoprecipitation revealed that RAM, RNMT and CMTR1 promote binding of RNA polymerase II at gene loci. In RAM-repressed cells, RNA polymerase II binding was reduced at pluripotency-associated genes, but relatively increased at neural genes. Moreover, knock-down of RNMT or CMTR1 induced increased or decreased accumulation of RNA polymerase II at promoter proximal regions respectively. In naïve T cells, Rnmt or Cmtr1 conditional knock-outs caused downregulation of translation-related transcripts and upregulation of cell cycle transcripts. Furthermore, many transcripts were specifically dependent on RNMT or CMTR1 for expression, demonstrating distinct roles of these cap methyltransferases. Thus, the mRNA cap methylation emerges as an important regulator of pluripotency and differentiation, modulating gene expression at transcriptional and post-transcriptional levels.
|
4 |
Role of Nrd1p and Ctk1p in transcription termination and the metabolism of non-coding RNAs in Saccharomyces cerevisiae / Le rôle de Nrd1p et Ctk1p dans la terminaison de la transcription et le métabolisme des ARNs non-codant chez Saccharomyces cerevisiaeTudek, Agnieszka 21 March 2014 (has links)
L’ARN polymérase II (ARNPII) synthétise des ARNs codants et des ARNs non-codants (ARNnc) tels que les petits ARNs nucléaire/nucléolaire (sn/snoRNAs) et les CUTs (Cryptic Unstable Transcripts). Les CUTs sont des transcrits ubiquitaire souvent produits dans des régions codants dont la transcription peut interférer avec l’expression des gènes. Le contrôle de l’expression des ARNnc est essentiel et se fait aux niveaux de la terminaison de la transcription et la dégradation de l’ARN. Chez la levure Saccharomyces cerevisiae la terminaison de la transcription des gènes codants est effectuée par le Facteur de Clivage et de Polyadénylation (CPF), tandis que les ARNnc courts sont terminés par le complexe Nrd1p-Nab3p-Sen1p (NNS). La terminaison de la transcription est régulée par la phosphorylation du domaine C-terminal (CTD) de l’ARNPII composé de répétitions du motif Y1S2P3T4S5P6S7. Un niveau élevé de phosphorylation des résidus Ser5 près du promoteur permet l’activité du complexe NNS. La phosphorylation des résidus Ser2 est catalysée durant la transcription par la kinase Ctk1p et ces résidus sont reconnus par des éléments de la voie CPF. Mon travail de thèse a porté sur le mécanisme de terminaison de la transcription par le complexe NNS. La terminaison NNS dépend de la liaison de Nrd1p et Nab3p à des motifs dans l’ARN naissant et l’activité hélicase de Sen1p qui provoque le relarguage de la polymérase. La sous-unité Nrd1p interagit avec le domaine CTD de l’ARNPII phosphorylé sur Ser5 à travers son domaine CID (CTD-interaction domain). Le rôle du CID dans la terminaison à été proposé mais pas encore clairement démontré. En collaboration avec le groupe de P. Cramer (Université Louis-et-Maximilien de Munich Allemagne) nous avons mis en évidence que le CID est requis pour une terminaison efficace par la voie NNS et qu’il est important pour le recrutement de Nrd1p sur l’ARNPII. Le CID est aussi impliqué de manière directe ou indirecte dans l’interaction de Sen1p avec Nrd1p et Nab3p. En parallèle, avec le groupe de F. Holstege (Université Centre Médicale de Utrecht, Pays-Bas) nous avons montré que la phosphorylation en Ser2 du domaine CTD est requise pour une terminaison efficace par la voie NNS. De manière surprenante, ce résidu joue un rôle mineur dans la terminaison des ARNs codants effectuée par le complexe CPF. Les ARNs naissant terminés par le complexe NNS sont rapidement ciblés par le complexe nucléase exosome/Rrp6p et son cofacteur TRAMP ce qui mène a la maturation des sn/snoRNAs et la destruction des CUTs. Le complexe NNS interagit in vivo avec l’exosome et le complexe TRAMP, ce qui facilite la dégradation. Cependant les détails moléculaires de cette interaction restent inconnus. Nous avons montré que le domaine CID est requis et suffisant in vivo et in vitro pour l’interaction de Nrd1p avec la partie C-terminale de la sous-unité Trf4p du complexe TRAMP, que nous avons appelé NIM (Nrd1p-Interaction Motif). En collaboration avec le groupe de R. Stefl (Université Masaryk, République Tchèque) nous avons étudié par spectroscopie RMN la structure de ce motif NIM lié au CID. Nous avons mis en évidence que le CID lie le NIM et le CTD de façon similaire, et que ces interactions sont mutuellement exclusives. Le NIM se lie au CID environ 100 fois plus fortement qu’au CTD. Nous proposons que ces interactions alternatives de Nrd1p définissent des formes différentes du complexe NNS, une qui fonctionne dans la terminaison de la transcription, l’autre qui est active dans la dégradation. In vitro l’interaction du NIM avec le CID stimule l’activité poly(A)-polymérase de Trf4p ce qui suggère une fonction importante de cette interaction dans la dégradation. Nous montrons aussi que Rrp6p interagit directement avec Trf4p et cette liaison in vivo sert à recruter le complexe TRAMP à l’exosome Nous proposons que ce jeu serré d’interactions entre les complexes NNS, TRAMP et l’exosome/Rrp6p contribue à augmenter l’efficacité de dégradation de l’ARN in vivo / The RNA polymerase II (RNAPII) synthesizes protein-coding RNAs and many non-coding RNAs (ncRNAs) such as small nuclear/nucleolar (sn-/snoRNAs) and Cryptic Unstable Transcripts (CUTs). CUTs are ubiquitously transcribed including overlapping and antisense to genes, which can interfere with gene expression. Control of ncRNA expression is vital and also operates at the level of transcription termination and RNA degradation.In yeast Saccharomyces cerevisiae transcription of protein-coding genes is terminated by the Cleavage and Polyadenylation Factor (CPF), while short ncRNAs are generated by transcription termination dependent from the Nrd1p-Nab3p-Sen1p (NNS) complex. Transcription termination is regulated by phosphorylation of the carboxy-terminal domain (CTD) of the Rpb1p subunit of RNAPII, composed of repeats of the Y1S2P3T4S5P6S7 motif. Promoter-proximal high levels of serine 5 phosphorylated (Ser5P) CTD favors the function of the NNS pathway while the Ser2 phosphorylated mark (Ser2P), which is gradually introduced during transcription by Ctk1p, is recognized by components of the CPF pathway. The study of the mechanism of action of the NNS complex was the subject of my PhD work.NNS-dependent transcription termination is driven by the recognition of four nucleotide motifs in the nascent RNA by Nrd1p and Nab3p and the release of the RNAPII by the Sen1p helicase. Nrd1p interacts with the CTD-Ser5P via its CTD-interaction domain (CID). Thus a role of the CID in termination was anticipated but not demonstrated. In collaboration with the group of P. Cramer (Ludwig Maximilian University of Munich, Germany), we have shown that the Nrd1p CID domain is required for efficient transcription termination at most NNS-target genes and that it is important for the recruitment of Nrd1p to the RNAPII. This domain is also involved, directly or indirectly, in the interaction of the Sen1p helicase with Nrd1p and Nab3p. In the second project, in collaboration with F. Holstege group (University Medical Center Utrecht, Netherlands), we have shown that the CTD-Ser2P mark is important for efficient transcription termination by the NNS pathway but, surprisingly, it appears to play a minor role in termination of mRNA-coding genes by the CPF-complex.Shortly after NNS-dependent termination, the released ncRNAs are targeted by the nuclear exosome/Rrp6p nuclease complex and its cofactor the TRAMP which results in trimming of sn-/snoRNAs to a mature form and complete degradation of CUTs. The NNS complex co-purifies in vivo with the TRAMP/exosome, which is believed to facilitate subsequent degradation and processing. However, the molecular details of this interaction are unknown. We show that the CID is required and sufficient in vivo and in vitro for the interaction of Nrd1p with a motif present in the C-terminal region of Trf4p, which we called NIM (for Nrd1p-Interaction Motif). In collaboration with the group of R. Stefl (Masaryk University, Czech Republic), we obtained the NMR structure of the CID bound to the NIM and demonstrated that the CID binds in a similar manner to the CTD and the NIM. The CID interacts with the CTD and the NIM in a mutually exclusive manner and the former interaction is roughly 100 times stronger than the first. We propose that these alternative interactions represent two forms of the NNS complex, one functioning in termination and the other in degradation. Importantly, the NIM-CID interaction is likely to be functionally relevant since in vitro it results in the stimulation of the polyA polymerase activity of the Trf4p. We further show that Trf4p interacts directly with Rrp6p, which in vivo serves to recruit the TRAMP to the core exosome complex. This tight interplay between the NNS, TRAMP and exosome/Rrp6p complexes most likely accounts for the efficiency of RNA degradation in vivo.
|
5 |
Analysis of transcription factor and histone modification dynamics in the nucleus of single living cells using a novel antibody-based imaging approach / Analyse en cellule unique vivante de la dynamique des facteurs de transcription et des modifications d’histone en utilisant une nouvelle approche d’imagerie fondée sur l’utilisation d’anticorpsConic, Sascha 27 September 2018 (has links)
Dans les cellules des eucaryotes, la transcription des gènes est contrôlée par une pléthore de complexes protéiniques. Cependant, la plupart de nos connaissances fondamentales sur la régulation de la transcription viennent des expériences biochimiques ou des expériences d’immunofluorescences utilisant des cellules fixées. Par conséquent, beaucoup d’efforts ont été consacré récemment pour obtenir des informations sur les mouvements dynamiques ou sur l’assemblage des facteurs de transcription directement dans des cellules vivantes. Nous avons développé une stratégie de marquage, appelé « versatile antibody-based imaging approach » (VANIMA), dans laquelle des anticorps marqués avec un fluorochrome sont introduit dans des cellules vivantes pour visualiser spécifiquement des protéines endogènes ou des modifications post-traductionnelle. Nous avons pu montrer que VANIMA peut être utilisé pour étudier des processus dynamique des mécanismes fondamental de la biologie y compris les facteurs de la machinerie de transcription ainsi que les modifications des histones dans des cellules vivantes de cancer humaine en utilisant la microscopie conventionnelle ou à super-résolution. Dans l’avenir VANIMA va servir comme un outil valable pour révéler les dynamiques des processus endogènes en biologie y compris la transcription directement dans des cellules vivantes individuelles. / In eukaryotic cells, gene transcription is controlled by a plethora of protein complexes. However, most of our basic knowledge about transcription regulation originate from biochemical experiments or immunofluorescence experiments using fixed cells. Consequently, many efforts have been devoted recently to obtain information about the dynamic movements or assembly of transcription factors directly from living cells. Therefore, we developed a labeling strategy, named versatile antibody-based imaging approach (VANIMA), in which fluorescently labeled antibodies are introduced into living cells to image specific endogenous proteins or posttranslational modifications. We were able to show that VANIMA can be used to study dynamical processes of fundamental biological mechanisms including factors of the transcription machinery as well as histone modifications in living human cancer cells using conventional or super-resolution microscopy. Hence, in the future VANIMA will serve as a valuable tool to uncover the dynamics of endogenous biological processes including transcription directly in single living cells.
|
6 |
Mechanisms of recruitment of the CTD phosphatase Rtr1 to RNA polymerase IIBerna, Michael J., Sr. 19 October 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The C-terminal domain (CTD) of the RNA polymerase II (RNAPII) subunit Rpb1 must exist in a hypophosphorylated state prior to forming a competent transcription initiation complex. However, during transcription, specific kinases and phosphatases act on the RNAPII CTD to regulate its phosphorylation state, which serves to recruit sequence-specific and general transcription factors at the appropriate stage of transcription. A key phosphatase involved in this process, Rtr1 (Regulator of Transcription 1), was shown to regulate a key step important for transcription elongation and termination. Although the role that Rtr1 plays in regulating RNAPII transcription has been described, the mechanism involved in the recruitment of Rtr1 to RNAPII during transcription has not been elucidated in yeast. Consequently, the present work utilized both affinity purification schemes in Saccharomyces cerevisiae and mass spectrometry to identify key Rtr1-interacting proteins and post-translational modifications that potentially play a role in recruiting Rtr1 to RNAPII. In addition to RNAPII subunits, which were the most consistently enriched Rtr1-interacting proteins, seven proteins were identified that are potentially involved in Rtr1 recruitment. These included PAF complex subunits (Cdc73, Ctr9, Leo1), the heat shock protein Hsc82, the GTPase Npa3, the ATPase Rpt6, and Spn1. Indirect evidence was also uncovered that implicates that the CTDK-I complex, a kinase involved in RNAPII CTD phosphorylation, is important in facilitating interactions between Rtr1, RNAPII, and select transcription factors. Additionally, a putative phosphorylation site was identified on Ser217 of Rtr1 that may also play a role in its recruitment to RNAPII during transcription.
|
Page generated in 0.1171 seconds