• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cellular recognition of RNA virus infection leading to activation of interferon regulatory factors three and seven and establishment of the antiviral state

TenOever, Benjamin R. January 2004 (has links)
No description available.
2

Cellular recognition of RNA virus infection leading to activation of interferon regulatory factors three and seven and establishment of the antiviral state

TenOever, Benjamin R. January 2004 (has links)
Virus infection represents an intracellular invasion of host cells for the sole purpose of multiplication. Successful virus replication requires entry into tropic cells, usurping of the cellular machinery, and the production of progeny virions to initiate further rounds of infection. Establishment of the antiviral state in response to virus begins at the site of infection and requires the initiation of a preexisting signaling network designed to inhibit virus replication and aid in the establishment of this coordinated immune response. Integral components of this network include the IRF-3 and IRF-7 transcription factors that play essential roles in the cellular response to infection through virus induced phosphorylation by an unknown virus activated kinase. The objective of this research was to elucidate the viral antigen(s) required to induce the phosphorylation and subsequent activation of IRF-3 and IRF-7, to identify the molecular component(s) required in this activation process, and to decipher the mechanism(s) by which cellular recognition of virus infection initiates this antiviral response. We demonstrate that activation of this signaling network, following RNA virus infection, is dependent on viral entry, viral transcription, and viral translation and propose that the molecular requirements governing activation of IRF-3 and IRF-7 are the result of viral byproducts formed during the process of cytoplasmic RNA self replication; including both the formation of double stranded RNA and ribonucleoprotein complexes. Following cellular recognition of these motifs, signal transduction networks converge onto an IKK-related kinase structure composed of adaptor proteins bound to two kinase subunits, TBK-1 and IKKepsilon, which we propose to be essential components of the virus activated kinase. We demonstrate that TBK-1 or IKKepsilon activation results in the establishment of an antiviral state that renders cells non permissive to viral replic
3

Caracterização funcional e antigênica da proteína de matriz do Vírus Respiratório Sincicial humano. / Functional and antigenic characterization of human Respiratory Syncytial Virus matrix protein.

Ribeiro, Paulo Guilherme Guimarães 14 November 2012 (has links)
O Vírus Respiratório Sincicial humano (hRSV human Respiratory Syncytial Virus) está entre os principais causadores de doenças do trato respiratório. O hRSV pertence à família Paramyxoviridae. Os sintomas da infecção podem variar de simples estado gripal a doença respiratória grave, e eventualmente levar a óbito. Atualmente não há vacina licenciada ou droga eficaz contra esse vírus. Anteriormente foram obtidos, em nosso laboratório, vetores com genes otimizados. Com essas ferramentas a proteína M foi produzida e purificada tendo sido possível obter anticorpos policlonais específicos e eficientes na sua detecção. Com esses anticorpos confirmamos a interação da proteína M com as proteínas celulares tropomiosina e nucleofosmina. Também foi demonstrado por imunofluorescência e por western blotting que a proteína M quando expressa fora do contexto de infecção apresenta localização nuclear e citoplasmática. Foram feitos testes de imunização com a proteína M purificada ou com um vetor eucariótico que a expressa (DNA). A imunização com proteína M resultou apenas em resposta humoral, enquanto com a vacina de DNA obtivemos apenas resposta celular. Nenhum desses imunógenos, entretanto, foi capaz de conferir proteção contra hRSV. / The human Respiratory Syncytial Virus (hRSV) is among the main causes of respiratory tract diseases, hRSV belongs to the Paramyxoviridae family. The symptoms of the infection can range from simple flulike state to severe respiratory disease eventually leading to death. Currently there is no licensed vaccine or effective drug against this virus. Vectors with genes optimized for of the hRSV Matrix protein (M) expression in bacteria and in eukaryotic cells were previously obtained in our lab. With these tools the M protein was produced and purified. Specific and efficient polyclonal antibodies could then be obtained and used for its detection. Using these antibodies we confirmed M interaction with cellular proteins tropomyosin and nucleophosmin. It was also demonstrated by immunofluorescence and western blotting that protein M when expressed out of viral infection context, presents cytoplasmic and nuclear localization. Immunization tests were made with the purified M protein or with a eukaryotic vector that expresses it (DNA). Immunization with M protein resulted only in humoral response, while with the DNA vaccine only cellular response was obtained. None of these antigens, however, was able to confer protection against hRSV.
4

Caracterização funcional e antigênica da proteína de matriz do Vírus Respiratório Sincicial humano. / Functional and antigenic characterization of human Respiratory Syncytial Virus matrix protein.

Paulo Guilherme Guimarães Ribeiro 14 November 2012 (has links)
O Vírus Respiratório Sincicial humano (hRSV human Respiratory Syncytial Virus) está entre os principais causadores de doenças do trato respiratório. O hRSV pertence à família Paramyxoviridae. Os sintomas da infecção podem variar de simples estado gripal a doença respiratória grave, e eventualmente levar a óbito. Atualmente não há vacina licenciada ou droga eficaz contra esse vírus. Anteriormente foram obtidos, em nosso laboratório, vetores com genes otimizados. Com essas ferramentas a proteína M foi produzida e purificada tendo sido possível obter anticorpos policlonais específicos e eficientes na sua detecção. Com esses anticorpos confirmamos a interação da proteína M com as proteínas celulares tropomiosina e nucleofosmina. Também foi demonstrado por imunofluorescência e por western blotting que a proteína M quando expressa fora do contexto de infecção apresenta localização nuclear e citoplasmática. Foram feitos testes de imunização com a proteína M purificada ou com um vetor eucariótico que a expressa (DNA). A imunização com proteína M resultou apenas em resposta humoral, enquanto com a vacina de DNA obtivemos apenas resposta celular. Nenhum desses imunógenos, entretanto, foi capaz de conferir proteção contra hRSV. / The human Respiratory Syncytial Virus (hRSV) is among the main causes of respiratory tract diseases, hRSV belongs to the Paramyxoviridae family. The symptoms of the infection can range from simple flulike state to severe respiratory disease eventually leading to death. Currently there is no licensed vaccine or effective drug against this virus. Vectors with genes optimized for of the hRSV Matrix protein (M) expression in bacteria and in eukaryotic cells were previously obtained in our lab. With these tools the M protein was produced and purified. Specific and efficient polyclonal antibodies could then be obtained and used for its detection. Using these antibodies we confirmed M interaction with cellular proteins tropomyosin and nucleophosmin. It was also demonstrated by immunofluorescence and western blotting that protein M when expressed out of viral infection context, presents cytoplasmic and nuclear localization. Immunization tests were made with the purified M protein or with a eukaryotic vector that expresses it (DNA). Immunization with M protein resulted only in humoral response, while with the DNA vaccine only cellular response was obtained. None of these antigens, however, was able to confer protection against hRSV.
5

Induction of type I interferons and viral immunity /

Hidmark, Åsa, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.

Page generated in 0.0829 seconds