Spelling suggestions: "subject:"RNA exosomes""
1 |
U snRNA の成熟と分解の分子機構の研究川本, 崇仁 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23049号 / 理博第4726号 / 新制||理||1677(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 大野 睦人, 教授 青山 卓史, 教授 川口 真也 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
2 |
Transcriptional Homeostasis and Chromatin DynamicsBryll, Alysia 13 April 2022 (has links)
Multiple regulatory mechanisms work to ensure that eukaryotic transcription maintains mRNA pools and subsequent protein synthesis. When errors in transcription occur, deleterious effects on cellular fitness can develop. RNA degradation as well as histone modifications, specifically at promoter proximal nucleosomes, play a critical role in maintaining transcription, but, exact mechanisms are not fully understood. In this dissertation, I investigate the role of RNA degradation and chromatin dynamics in transcription regulation as well as further understand, through biochemical analysis, a critical histone deacetylase.
Using various genome-wide methodologies in Saccharomyces cerevisiae, we find a functional interaction between the nuclear RNA exosome and histone variant H2A.Z that maintains mRNA levels. There is a reduction in RNA polymerase II nascent transcription following RNA exosome subunit Rrp6 depletion that is further globally accentuated with H2A.Z deposition loss. To understand the mechanism leading to this global reduction, we identify the mRNA of Sirtuin histone deacetylase Hst3 as a target of the RNA exosome, revealing a means to link degradation to the transcription machinery. These findings show that even slight changes in deacetylase or acetylase activity can have significant effects on transcription. Additionally, we reveal a global impact of H2A.Z on transcription.
We further investigate the functional and structural significance of human surtuin histone deacetylase SIRT6 (yeast homolog Hst3). Using histone deacetylase assays, we confirm the significance of specific residues of SIRT6 in nucleosome binding and deacetylase activity. Additionally, we show SIRT6 has reduced deacetylase activity in vitro on acetylated lysine 56 as compared to acetylated lysine 9 on histone H3. Finally, we confirm structural findings that the histone tail of H2A impacts SIRT6 H3K9Ac deacetylation activity.
Together, these findings indicate a critical importance of histone deacetylase activity in maintaining transcription, a novel role of H2A.Z in global transcription regulation that furthers our understanding of SIRT6 structure and function.
|
3 |
Etude de la maturation et de l'assemblage du ribosome eucaryote: caractérisation fonctionnelle de nouveaux facteurs trans- / Functional charaterization of new trans- factors implicated in maturation and assembly of the eukaryotic ribosomeSchillewaert, Stéphanie 28 October 2011 (has links)
La synthèse du ribosome est un processus compliqué, très hiérarchisé et essentiel à toutes les cellules vivantes. La complexité de ce processus tient notamment au fait que les différentes étapes de la biogenèse du ribosome eucaryote sont temporellement et spatialement organisées dans des compartiments cellulaires différents (le nucléole, le nucléoplasme et le cytoplasme). Il est toutefois connu que le pré-ARNr 35S (le précurseur de trois des quatre ARNr, les ARNr 18S, 5.8S et 25S) est pris en charge dès sa synthèse par des facteurs impliqués dans sa maturation. Ainsi, la formation d’un ribosome requiert l’association, sur le transcrit naissant, des facteurs de synthèse, au nombre de 400. Ces facteurs essentiels interagissent transitoirement avec l’ARNr et ne font pas partie des particules ribosomiques matures impliquées dans la traduction. Leur rôle est d’assister le remodelage constant du pré-ribosome et le processus d’assemblage des sous-unités.<p>Parmi ces facteurs de synthèse, nous avons caractérisé en détail, chez la levure et chez l’homme, la protéine Las1 impliquée dans la maturation des deux extrémités de l’ITS2, séquence qui sépare les ARNr 5.8S et 25S/28S. Chez la levure, en absence de la protéine Las1, les analyses de profils de polysomes révèlent un déficit de sous-unité 60S et l’apparition d’« halfmères ». Les techniques de purification d’affinité et de gradient de sédimentation nous indiquent que Las1 est associée aux pré-ribosomes 60S et qu’elle interagit avec de nombreux facteurs de synthèse de la petite, de la grande sous-unité ou des deux. De plus, Las1 copurifie avec des pré-ribosomes qui contiennent aussi les exoribonucléases 5’-3’ Rat1/Rai1 et Xrn1. Rai1 coordonne la maturation aux deux extrémités de l’ARNr 5.8S. Nous suggérons que Las1 appartient à un macrocomplexe connectant spatialement des sites de clivages éloignés sur la séquence primaire du pré-ARNr qui seraient rapprochés suite au reploiement de l’ITS2.<p>Un autre aspect de ce travail de thèse consiste en l’étude de l’assemblage des particules ribonucléoprotéiques et plus spécifiquement du pré-ribosome et des sous-unités ribosomiques eucaryotes. Nous avons utilisé la technique d’immunoprécipitation de chromatine (Ch-IP) pour caractériser l’assemblage d’une structure appelée le « SSU processome ». Celui-ci correspond à un pré-ribosome en formation ainsi que l’assemblage des protéines ribosomiques sur l’ARNr naissant.<p>Enfin, nous avons étudié le rôle d’une plateforme d’activation de méthyltransférases d’ARN et de protéines, la protéine Trm112 dans la ribogenèse. Nous avons montré que chez la levure, Trm112 est impliquée dans la synthèse du ribosome et dans la progression de la mitose. En absence de cette protéine, les pré-ARNr sont dégradés par un mécanisme de surveillance. Trm112 copurifie avec plusieurs facteurs de synthèse du ribosome dont la méthyltransférase Bud23, impliquée dans la modification post-transcriptionnelle de l’ARNr18S. Trm112 est requise pour cette méthylation et nous postulons que la protéine Bud23 est incapable de se lier aux pré-ribosomes en l’absence de Trm112.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
4 |
RNA Exosome & Chromatin: The Yin & Yang of Transcription: A DissertationRege, Mayuri 12 November 2015 (has links)
Eukaryotic genomes can produce two types of transcripts: protein-coding and non-coding RNAs (ncRNAs). Cryptic ncRNA transcripts are bona fide RNA Pol II products that originate from bidirectional promoters, yet they are degraded by the RNA exosome. Such pervasive transcription is prevalent across eukaryotes, yet its regulation and function is poorly understood.
We hypothesized that chromatin architecture at cryptic promoters may regulate ncRNA transcription. Nucleosomes that flank promoters are highly enriched in two histone marks: H3-K56Ac and the variant H2A.Z, which make nucleosomes highly dynamic. These histone modifications are present at a majority of promoters and their stereotypic pattern is conserved from yeast to mammals, suggesting their evolutionary importance. Although required for inducing a handful of genes, their contribution to steady-state transcription has remained elusive. In this work, we set out to understand if dynamic nucleosomes regulate cryptic transcription and how this is coordinated with the RNA exosome.
Remarkably, we find that H3-K56Ac promotes RNA polymerase II occupancy at a large number of protein coding and noncoding loci, yet neither histone mark has a significant impact on steady state mRNA levels in budding yeast. Instead, broad effects of H3-K56Ac or H2A.Z on levels of both coding and ncRNAs are only revealed in the absence of the nuclear RNA exosome. We show that H2A.Z functions with H3-K56Ac in chromosome folding, facilitating formation of Chromosomal Interaction Domains (CIDs). Our study suggests that H2A.Z and H3-K56Ac work in concert with the RNA exosome to control mRNA and ncRNA levels, perhaps in part by regulating higher order chromatin structures. Together, these chromatin factors achieve a balance of RNA exosome activity (yin; negative) and Pol II (yang; positive) to maintain transcriptional homeostasis.
|
Page generated in 0.0313 seconds