1 |
Biophysical studies of an expanded RNA recognition motif from the Bruno proteinLyon, Angeline Marie 19 January 2011 (has links)
RNA recognition motifs (RRMs) are a ubiquitous class of proteins which bind RNA in a sequence-specific fashion, often with high affinity. The mechanisms through which this single protein domain recognizes diverse RNA sequences is not fully understood. High-resolution three-dimensional structures are particularly important in understanding the structural features required for RNA recognition and binding. This work presents the structure of an expanded RRM domain from the Drosophila melanogaster Bruno protein. The Bruno protein is involved in establishing proper body patterning during development. This is accomplished through the translational repression of several mRNAs, in particular, the oskar mRNA. Previous work has identified an expanded RRM domain within the Bruno protein. This RRM requires an additional forty amino acids prior to the start of the canonical RRM domain for high affinity RNA binding. The protein was found to contain a canonical RRM domain comprised of four anti-parallel [beta] strands and two [alpha] helices. The RRM is preceded by a ten amino acid loop that interacts with [alpha]₁ and [beta]₂, while the remaining amino acids are flexible in solution. Interestingly, the deletion of these residues does not alter the fold or stability of the RRM domain. Thus, these additional residues must be involved in RNA binding, as they are not required for structure. From these studies, the Bruno RRM represents a new example of protein features required for recognition and high affinity binding of RNA. / text
|
2 |
Regulation of mammalian 3' slpice site recognitionCorrionero Saiz, Ana 16 December 2010 (has links)
Alternative splicing provides the cell the ability to generate, from a single gene, multiple protein isoforms, sometimes with different or even antagonistic functions. This process is tightly regulated and alterations in the accurate balance of alternatively spliced mRNAs are a common cause of disease.
The main objective of this thesis has been to understand the molecular mechanisms underlying disease-causing defective splicing. Skipping of Fas death receptor exon 6 leads to decreased Fas-ligand induced apoptosis. We have studied how this event is promoted by a mutation at the 3’ splice site and by the proto-oncogene SF2, leading to Autoimmune Lymphoproliferative Syndrome and possibly contributing to tumor progression, respectively. Moreover, we have determined the mechanism by which an antitumor drug, Spliceostatin A, alters 3’ splice site recognition and affects alternative splicing.
This thesis underscores the importance of pre-mRNA splicing in disease and how the study of disease-causing aberrant splicing can be used as a tool to understand splicing mechanisms and vice versa. / El processament alternatiu del pre-ARNm proporciona a la cèl•lula l’habilitat de generar, a partir d’un únic gen, proteïnes amb funcions diferents i, fins i tot, antagòniques. Aquest procés està altament regulat i desequilibris en l’abundància de les diferent isoformes són causes comunes de malaltia.
L’objectiu principal d’aquesta tesi ha estat entendre el mecanisme molecular a través del qual problemes en el processament del pre-ARNm causen malalties. L’exclusió de l’exó 6 del receptor de mort cel•lular Fas condueix a una disminució de l’apoptosi en resposta al lligand de Fas. Hem estudiat com una mutació al lloc de processament 3’ d’aquest exó i el proto-oncogén SF2 promouen aquest patró, causant el síndrome autoimmune lifoproliferatiu i possiblement contribuint a la progressió tumorogènica, respectivament. A més, hem estudiat el mecanisme pel qual la droga antitumoral Spliceostatin A altera el reconeixement del lloc de processament 3’ i causa canvis en el processament alternatiu de diversos gens.
Aquesta tesi posa en evidència la importancia del processament del pre-ARNm en malalties i com l’estudi de mutacions que alteren aquest procés i són causa de malaties pot ser utilitzat con una eina per entendre el mecanisme d’aquest processament i viceversa.
|
3 |
Involvement of the Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF) in the Hepatitis Delta Virus (HDV) RNA-Templated TranscriptionZhang, Da Jiang 13 May 2014 (has links)
Hepatitis delta virus (HDV) is the smallest known mammalian RNA virus, containing a genome of ~ 1700 nt. Replication of HDV is extremely dependent on the host transcription machinery. Previous studies indicated that RNA polymerase II (RNAPII) directly binds to and forms an active preinitiation complex on the right terminal stem-loop fragment (R199G) of HDV genomic RNA, and that the polypyrimidine tract-binding protein-associated splicing factor (PSF) directly binds to the same region. Further studies demonstrated that PSF also binds to the carboxyl-terminal domain (CTD) of RNAP II. In my thesis, co-immunoprecipitation assays were performed to show that PSF stimulates the interaction of RNAPII with R199G. Results of co-immunoprecipitation experiments also suggest that both the RNA recognition motif 2 (RRM2) and N-terminal proline-rich region (PRR) of PSF are required for the interaction between PSF and RNAPII, while the two RNA recognition motifs (RRM1 and RRM2) might be required for the interaction of PSF with R199G. Furthermore, in vitro run-off transcription assays suggest that PSF facilitates the HDV RNA transcription from the R199G template. Together, the above experiments suggest that PSF might act as a transcription factor for the RNAPII transcription of HDV RNA by linking the CTD of RNAPII and the HDV RNA promoter. My experiments provide a better understanding of the mechanism of HDV RNA-dependent transcription by RNAP II.
|
4 |
Involvement of the Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF) in the Hepatitis Delta Virus (HDV) RNA-Templated TranscriptionZhang, Da Jiang January 2014 (has links)
Hepatitis delta virus (HDV) is the smallest known mammalian RNA virus, containing a genome of ~ 1700 nt. Replication of HDV is extremely dependent on the host transcription machinery. Previous studies indicated that RNA polymerase II (RNAPII) directly binds to and forms an active preinitiation complex on the right terminal stem-loop fragment (R199G) of HDV genomic RNA, and that the polypyrimidine tract-binding protein-associated splicing factor (PSF) directly binds to the same region. Further studies demonstrated that PSF also binds to the carboxyl-terminal domain (CTD) of RNAP II. In my thesis, co-immunoprecipitation assays were performed to show that PSF stimulates the interaction of RNAPII with R199G. Results of co-immunoprecipitation experiments also suggest that both the RNA recognition motif 2 (RRM2) and N-terminal proline-rich region (PRR) of PSF are required for the interaction between PSF and RNAPII, while the two RNA recognition motifs (RRM1 and RRM2) might be required for the interaction of PSF with R199G. Furthermore, in vitro run-off transcription assays suggest that PSF facilitates the HDV RNA transcription from the R199G template. Together, the above experiments suggest that PSF might act as a transcription factor for the RNAPII transcription of HDV RNA by linking the CTD of RNAPII and the HDV RNA promoter. My experiments provide a better understanding of the mechanism of HDV RNA-dependent transcription by RNAP II.
|
5 |
Engineering post-transcriptional regulation of gene expression with RNA-binding proteinsDolcemascolo, Roswitha 23 January 2024 (has links)
[ES] La biología sintética tiene como objetivo diseñar y construir nuevos sistemas biológicos con funciones deseadas. Los circuitos basados en el control transcripcional han tenido preponderancia en este campo tras el trabajo pionero del toggle switch y del repressilator. Sin embargo, para avanzar en la creación de tecnologías transformadoras que utilicen circuitos genéticos sintéticos, es esencial una combinación de mecanismos de control confiables en todo el flujo de la información genética. Esta combinación es necesaria para alcanzar el nivel de integrabilidad y complejidad funcional observado en la naturaleza. En tal sentido, recientemente han ganado atención los circuitos basados en regulación postranscripcional. En particular, se ha aprovechado la gran programabilidad de ARN para crear circuitos reguladores para la biodetección de señales ambientales o para controlar la vía metabólica en la bioproducción. En esta tesis, por el contrario, proponemos explotar las proteínas de unión a ARN para diseñar circuitos sintéticos que operen a nivel de traducción en la bacteria Escherichia coli. Esta tesis pretende estudiar como surge y se propaga el ruido cuando la expresión genética está regulada por un factor de traducción, y la ampliación de la caja de herramientas de la biología sintética con una nueva caracterización de proteínas de unión a ARN adecuadas.
Por un lado, hemos diseñado un circuito de control postrancripcional utilizando la proteína de cápside del fago MS2. Mediante una meticulosa monitorización a nivel unicelular tanto del regulador como del gen regulado, hemos cuantificado el comportamiento dinámico del sistema, así como su estocasticidad. Si bien los esfuerzos anteriores se centraron en comprender la propagación del ruido en las regulaciones transcripcionales, el comportamiento estocástico de los genes regulados a nivel de la traducción sigue siendo en gran medida desconocido. Nuestros datos han revelado que un factor de traducción de proteínas ha permitido una fuerte represión a nivel unicelular, ha amortiguado la propagación del ruido de un gen a otro y ha conducido a una sensibilidad no lineal a las perturbaciones globales en la traducción. Estos descubrimientos han mejorado significativamente nuestra comprensión de la expresión genética estocástica y han proporcionado principios de diseño fundamentales para aplicaciones de biología sintéticas.
Por otro lado, aprovechamos el motivo de reconocimiento de ARN (RRM), el dominio proteico de unión a ARN mas prevalente en la naturaleza, a pesar de su predominio en los filos eucariotas, para diseñar un sistema de control postranscripcional ortogonal en Escherichia coli. Aprovechando la proteína de unión a ARN de mamífero Musashi-1, que contiene dos RRM canónicos, desarrollamos un circuito sofisticado. Musashi-1 ha funcionado como represor de la traducción alostérico a través de su interacción especifica con la región codificante N-terminal del ARN mensajero, mostrando capacidad de respuesta a los ácidos grasos. La caracterización integral tanto a nivel poblacional como unicelular ha destacado un cambio significativo en la expresión del reportero. Se obtuvieron conocimientos moleculares a través de la cinética de unión in vitro y evaluaciones de funcionalidad in vivo de una serie de mutantes de ARN. Este trabajo ha mostrado la adaptabilidad de la regulación basada en RRM a organismos mas simples, introduciendo una nueva capa regulatoria para el control de la traducción en procariotas y, en ultima instancia, ampliando los horizontes de la manipulación genética. / [CA] La biologia sintètica té per objectiu dissenyar i construir nous sistemes biològics amb funcions desitjades. Els circuits basats en el control transcripcional han tingut preponderancia en aquest camp després del treball pioner del toggle switch i del repressilator. Tot i això, per avançar en la creació de tecnologies transformadres que utilitzin circuits genètics sintètics, és esencial una combinació de mecanismes de control fiables en tot el flux de la información genètica. Aquesta combinació és necessària per assolir el nivel d'integrabilitat i complexitat funcional observat a la natura. En aquest sentit, recentement han guanyat atenció els circuits basats en regulació posttranscripcional. En particular, s'ha aprofitat la gran programabilitat d'ARN per crear circuits reguladors per a la biodetecció de senyals ambientals o per controlar la via metabólica a la bioproducció. En aquesta tesi, per contra, proposem exlotar les proteïnes d'unió a ARN per dissenyar circuits sintètics que operin a nivel de traducció al bacteri Escherichia coli. Aquesta tesi pretén estudiar com sorgeix i es propaga el soroll quan l'expressió genètica està regulada per un factor de traducció, il'ampliació de la caixa d'eines de la biología sintètica amb una nova caracteriació de proteïnes d'unió a ARN adequades.
D'una banda, hem dissenyat un circuit de control postranscripcional utilitzant la proteína de càpsid del fag MS2. Mitjançant una meticulosa monitorització a nivel inucel·lular tant del regulador com del gen regulat, hem quantificat el comportament dinàmic del sistema, així com la seva estocasticitat. Tot i que els esforços anteriors es van centrar a comprendre la propagació del soroll en les regulacions transcripcionals, el comportament estocàstic dels gens regulats a nivell de la traducció continua sent en gran mesura desonegut. Les nostres dades han revelat que un factor de traducció de proteïnes ha permès una forta repressió a nivell unicel·lular, ha esmorteït la propagació del soroll d'un gen a un altre i ha conduït a una sensibilitat no lineal a les pertorbacions globals a la traducció. Aquest descobriments han millorat significativament la nostra comprensió de l'expressió genètica estocástica i han proporcionat principis de sisseny fonamentals per a aplicacions de biología sintètiques.
D'altra banda, aprofitem el motiu de reconeixement d'ARN (RRM), el domini proteic d'unió a ARN més prevalent a la natura, malgrat el seu predomini als talls eucariotes, per dissenyar un sistema de control posttranscripcional ortogonal a Escherichia coli. Aprofitant la proteína d'unió a ARN de mamífers Musashi-1, que conté dos RRM canònics, hem desenvolupat un circuit sofisticat. Musashi-1 va funcionar com un repressor de la traducció al·lostèric a través de la seva interacció específica amb la regió codificant N-terminal de l'ARN missatger, mostrant capacitat de resposta als àcids grassos. La caracterització integral tant a nivel poblacional com unicèl·lular va destacar un canvi significatiu a l'expressió de l'informador. S'obtingueren coneixements moleculars a través de la cinètica d'unió in vitro i avaluacions de funcionalitat in vivo d'una sèrie de mutants d'ARN. Aquest treball va mostrar l'adaptabilitat de la regulació basada en RRM a organismos més simples, introduint una nova capa regulatòria per al control de la traducció en procariotes i, en darrer terme, ampliant els horitzons de la manipulació genètica. / [EN] Synthetic biology seeks to design and construct new biological systems with desired functions. Circuits based on transcriptional control have been preponderant in the field following the pioneering work of the toggle switch and repressilator. However, to advance the creation of transformative technologies using synthetic genetic circuits, a blend of dependable control mechanisms throughout the genetic information flow is essential. This combination is necessary to attain the level of integrability and functional complexity observed in nature. In this regard, circuits based on post-transcriptional regulation have recently gained attention. In particular, the great programmability of RNA has been exploited to create regulatory circuits for biosensing of environmental signals or for controlling metabolic pathway in bioproduction. In this thesis, in contrast, we propose to exploit RNA-binding proteins to engineer synthetic circuits that operate at the level of translation in the bacterium Escherichia coli. This thesis intends to study how noise emerges and propagates when gene expression is regulated by a translation factor, and the expansion of the synthetic biology toolbox with new characterization of suitable RNA-binding proteins.
On the one hand, we engineered a post-transcriptional control circuit using the phage MS2 coat protein. Through meticulous single-cell level monitoring of both the regulator and the regulated gene, we quantified the dynamic behavior of the system, as well as their stochasticity. While previous efforts focused on understanding noise propagation in transcriptional regulations, the stochastic behavior of genes regulated at the translation level remain largely unknown. Our data revealed that a protein translation factor enabled strong repression at the single-cell level, buffered noise propagation from gene to gene, and led to a nonlinear sensitivity to global perturbations in translation. These findings significantly enhanced our understanding of stochastic gene expression and provided foundational design principles for synthetic biology applications.
On the other hand, we harnessed the RNA recognition motif (RRM), the most prevalent RNA-binding domain in nature, despite its predominance in eukaryotic phyla, to engineer an orthogonal post-transcriptional control system in Escherichia coli. Leveraging the mammalian RNA-binding protein Musashi-1, which contains two canonical RRMs, we developed a sophisticated circuit. Musashi-1 functioned as an allosteric translation repressor through its specific interactions with the N-terminal coding region of messenger RNA, exhibiting responsiveness to fatty acids. Comprehensive characterization at both population and single-cell levels highlighted a significant fold change in reporter expression. Molecular insights were gleaned through in vitro binding kinetics and in vivo functionality assessments of a series of RNA mutants. This work showcased the adaptability of RRM-based regulation to simpler organisms, introducing a novel regulatory layer for translation control in prokaryotes, ultimately expanding the horizons of genetic manipulation. / Dolcemascolo, R. (2023). Engineering post-transcriptional regulation of gene expression with RNA-binding proteins [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202194
|
Page generated in 0.1022 seconds