• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 124
  • 124
  • 29
  • 19
  • 17
  • 14
  • 14
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Studies on Interactions between ARE Binding Proteins and Splicing Factors and their Role in Altered Splicing of PDGF-B ORF

Chorghade, Sandip Gulab January 2012 (has links) (PDF)
Pre-mRNA splicing is an important level in posttranscriptional gene regulation that is essential for accurate protein synthesis and generating protein diversity. The abundance of cryptic splice sites and long intronic DNA sequences makes their splicing a complex one. The identification of correct exons and introns needs additional information in the form of splicing regulatory elements (SREs) along with canonical splice signals. The interplay among these SREs and the trans factors (which bind to SREs) gives the identity to introns and exons which in turn leads to precise pre-mRNA splicing. Previous studies from our laboratory showed, that when expressed in mammalian cells from an expression vector, PDGF-B ORF was re-spliced at 4/5 exon junction with the downstream SV40 splice acceptor site in the vector. However, deletion of the 66-nt PDGF-B 3’ UTR region resulted in about 25% reduction in re-splicing. Sequence analysis of this region revealed presence of binding sites for splicing factors ASF/SF2 and SRp55, and an AU-rich element (ARE), mutation each of which affected re-splicing partially. In mammals, AREs are commonly found in the 3’UTR of mRNAs encoding proteins involved in diverse functions and are involved in selective mRNA degradation. Several ARE binding proteins are crucial for ARE’s function. Since mutation of the single ARE in the 3’UTR region altered the re-splicing efficiency, the role of AU-rich elements and ARE-binding proteins (AU-BPs) in modulation of splicing was investigated using siRNAs against AU-BPs, BRF1, hnRNPD, HuR, GAPDH and TTP. Down regulation of expression of these factors indeed affected the level of re-spliced product. We have studied the interactions between the full-length splicing factors (U1-70K and U2AF35) and the AU-BPs (BRF1, hnRNPD and HuR) as well as among the AU-BPs using three different assay methods: Yeast-two hybrid, co-immunoprecipitation and pull down assays. Our study has revealed that the BRF1 interacts with U1-70K and U2AF35 as well as the other AU-BPs hnRNPD and HuR but with different affinities. We have also analyzed the ability of AU-BPs to interact with SR proteins SRp20 and 9G8. We did find strong interaction of BRF1 with SRp20 and 9G8. Generation of a large number of nested deletion mutants of all the proteins allowed us to identify the interaction regions on the surface of BRF1, U1-70K, hnRNPD, U2AF35 and HuR. The results of Y2H analyses were further confirmed by pull down assay using purified interacting regions. It was found that a single region from aa 181-254 in BRF1 interacts with multiple partners i.e., splicing factors and the AU-BP hnRNPD. However, the RNA-binding zinc-finger domain from residue 120-181 independently interacts with HuR. Further, the multiple protein interacting region (MPIR) (aa 181-254) in BRF1 exhibits different affinities towards its interacting partners with that for U1-70K and hnRNPD being stronger than that for U2AF35 and HuR. This observation suggests that BRF1 activity can be modulated by interaction with different partners at different sites. U1-70K interacted only with BRF1 among the proteins tested in this study and this interaction appears to be RNA independent .This could have implications in splice site selection and RNA stability since BRF1 has been shown to promote RNA degradation. While the Arg/Glu-rich C-terminal region in U1-70K is sufficient for its interaction with BRF1, U2AF35 requires both the zinc-finger 2 and the arg/Gly/Ser-rich C-terminal regions for its association with BRF1. hnRNPD also interacts with multiple partners that include BRF1, HuR and U2AF35 using the N-terminal region that harbors a Ala-rich domain. The interaction of hnRNPD with HuR is RNA dependent while with BRF1 and U2AF35, it is RNA independentt. Further, its interaction with all the partners is equally strong. This suggests that hnRNPD could exert differential influence depending on the context of its interaction and abundance of the interacting partner. HuR, primarily known as an mRNA stabilizing factor, interacts with both BRF1 and hnRNPD with equal affinity involving the hinge region, the interaction with the former being RNA-independent and the later being RNA-dependent. This differential RNA-dependent and independent interactions with the two AU-BPs using a single interacting domain suggests a balancing act of HuR on the activities of BRF1 and hnRNPD. These interactions can further be differentially modulated by posttranslational modifications on one or all of the interacting partners depending on the physiological status of the cell. We have also analyzed the multiple protein complexes formed in absence of cellular RNA. Though we are unable to see direct protein-protein interaction between HuR and U1-70K in Yeast two hybrid analysis, we could detect the presence of U1-70K in HuR immunoprecipitate. It appears that U1-70K associates with HuR via BRF. We also detected the presence of HuR in U1-70K complexes which could be due to its association with BRF1. We are unable to find hnRNPD and U2AF35 in these complexes indicating that they may have been excluded. In anti-U2AF35 immunoprecipitates, we detected the presence of U1-70K as well as hnRNPD but no HuR. This may be due to RNase treatment as hnRNPD and HuR interactions are RNA dependent. Our findings that AU-rich elements in conjunction with AU-BPs function as intronic splicing modulators or enhancers, reveal hitherto unidentified new players in the poorly understood complex mechanisms that mediate alternative splicing. The possibility of dynamic nature of the interactions among splicing factors and AU-BPs mediated by post-translational modifications provide a basis for rapid cellular responses to changing environmental cues through generation of differentially spliced mRNAs and corresponding protein products that differ in their stability and hence their relative abundance. Our results also unfold enormous possibilities for future investigations on interactions among the many splicing factors and AU-BPs, and in understanding these complex interactions in modulation of pre-mRNA splicing, mRNA translation and degradation. The finding of coupling of AU-BPs to splicing machinery could further lead to better understanding of the mechanism of AU-BP-mediated targeting of mRNAs to processing bodies and ultimate degradation of the mRNAs.
122

Replikační bloky viru Rousova sarkomu v savčích buňkách / Rous sarcoma virus replication blocks in mammalian cells

Koslová, Anna January 2017 (has links)
One of the important tasks of virology and immunology is to explore the species- and cell-barriers preventing virus horizontal transmission and reveal the ways how viruses overcome these barriers and "adapt" to different species. This work is based on a well- established retroviral model - avian Rous sarcoma virus (RSV) and studies virus replication blocks in mammalian cells at both pre- and post-integration level. Interaction of the viral envelope glycoprotein (Env) with a specific cellular receptor mediates virus entry into cells. Although mammalian orthologues of specific chicken receptors do not support RSV entry, it was observed that some RSV strains are able to enter mammalian cells. Several RSV-transformed rodent cells lines were described and analysis of provirus H20- RSV in one these cells lines (hamster H-20 tumor cell line) showed multiple mutations including two crucial amino acid substitutions in different regions of Env. Substitutions D32G and L378S confer virus transmission to hamster, human and also chicken cells lacking the appropriate receptor. Altered conformation of H20-RSV Env is similar to a receptor-primed (activated) state of Env. This observation indicates that virus can circumvent the need of original cell receptor because of spontaneous Env activation caused by single...
123

Stoichiometric imbalance in the receptor complex contributes to dysfunctional BMPR-II mediated signalling in pulmonary arterial hypertension

Nasim, Md. Talat, Ghouri, A., Patel, B., James, V., Rudarakanchana, N., Morrell, N.W., Trembath, R.C. January 2008 (has links)
Heterozygous germline defects in a gene encoding a type II receptor for bone morphogenetic proteins (BMPR-II) underlie the majority of inherited cases of the vascular disorder known as pulmonary arterial hypertension (PAH). However, the precise molecular consequences of PAH causing mutations on the function of the receptor complex remain unclear. We employed novel enzymatic and fluorescence activity based techniques to assess the impact of PAH mutations on pre-mRNA splicing, nonsense-mediated decay (NMD) and receptor complex interactions. We demonstrate that nonsense and frameshift mutations trigger NMD, providing further evidence that haplo-insufficiency is a major molecular consequence of disease-related BMPR2 mutations. We identified heterogeneous functional defects in BMPR-II activity, including impaired type I receptor phosphorylation, receptor interactions and altered receptor complex stoichiometry leading to perturbation of downstream signalling pathways. Importantly, these studies demonstrate that the intracellular domain of BMPR-II is both necessary and sufficient for receptor complex interaction. Finally and to address the potential for resolution of stoichiometric balance, we investigated an agent that promotes translational readthrough of a BMPR2 nonsense reporter construct without interfering with the NMD pathway. We propose that stoichiometric imbalance, due to either haplo-insufficiency or loss of optimal receptor-receptor interactions impairs BMPR-II mediated signalling in PAH. Taken together, these studies have identified an important target for early therapeutic intervention in familial PAH.
124

Mechanisms of binding diversity in protein disorder : molecular recognition features mediating protein interaction networks

Hsu, Wei-Lun 25 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Intrinsically disordered proteins are proteins characterized by lack of stable tertiary structures under physiological conditions. Evidence shows that disordered proteins are not only highly involved in protein interactions, but also have the capability to associate with more than one partner. Short disordered protein fragments, called “molecular recognition features” (MoRFs), were hypothesized to facilitate the binding diversity of highly-connected proteins termed “hubs”. MoRFs often couple folding with binding while forming interaction complexes. Two protein disorder mechanisms were proposed to facilitate multiple partner binding and enable hub proteins to bind to multiple partners: 1. One region of disorder could bind to many different partners (one-to-many binding), so the hub protein itself uses disorder for multiple partner binding; and 2. Many different regions of disorder could bind to a single partner (many-to-one binding), so the hub protein is structured but binds to many disordered partners via interaction with disorder. Thousands of MoRF-partner protein complexes were collected from Protein Data Bank in this study, including 321 one-to-many binding examples and 514 many-to-one binding examples. The conformational flexibility of MoRFs was observed at atomic resolution to help the MoRFs to adapt themselves to various binding surfaces of partners or to enable different MoRFs with non-identical sequences to associate with one specific binding pocket. Strikingly, in one-to-many binding, post-translational modification, alternative splicing and partner topology were revealed to play key roles for partner selection of these fuzzy complexes. On the other hand, three distinct binding profiles were identified in the collected many-to-one dataset: similar, intersecting and independent. For the similar binding profile, the distinct MoRFs interact with almost identical binding sites on the same partner. The MoRFs can also interact with a partially the same but partially different binding site, giving the intersecting binding profile. Finally, the MoRFs can interact with completely different binding sites, thus giving the independent binding profile. In conclusion, we suggest that protein disorder with post-translational modifications and alternative splicing are all working together to rewire the protein interaction networks.

Page generated in 0.0801 seconds