• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 116
  • 116
  • 116
  • 30
  • 24
  • 22
  • 17
  • 17
  • 17
  • 16
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Bacillus subtilis GlpP protein, antitermination and mRNA stability

Glatz, Elisabeth. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Added t.p. with thesis statement inserted. Includes bibliographical references.
42

Rôle de la protéine EB2 du virus d'Epstein-Barr dans le métabolisme des ARN messagers / Role of the Epstein-Barr virus protein EB2 in messenger RNA metabolism

Mure, Fabrice 14 December 2016 (has links)
La régulation post-transcriptionnelle de l’expression génique est basée sur un réseau complexe et dynamique d’interactions ARN-protéines. Un défi important est de comprendre les mécanismes par lesquels ces protéines de liaison à l’ARN (RBPs) influencent chaque étape du métabolisme des ARNm. Les travaux réalisés au cours de cette thèse ont permis de caractériser de nouvelles fonctions de la RBP virale EB2 qui est indispensable à la production du virus d’Epstein-Barr (EBV). Des travaux antérieurs ont montré qu’EB2 favorise l’accumulation cytoplasmique de la majorité des ARNm viraux, dont la caractéristique est d’être transcrit à partir de gènes sans intron. Nous montrons que le rôle d’EB2 ne se limite pas à celui de facteur d’export des ARNm car cette RBP stabilise aussi ses ARNm cibles dans le noyau en les protégeant de la dégradation par l’exosome. Nos résultats indiquent qu’en absence d’EB2 : (i) certains ARNm viraux sont instables car ils contiennent des sites cryptiques d’épissage ; (ii) le facteur d’épissage SRSF3 déstabilise ces ARNm en interagissant à la fois avec l’exosome et le complexe NEXT, un des cofacteurs nucléaires de l’exosome. Par ailleurs, nous montrons également qu’EB2 est associée aux polysomes et stimule efficacement la traduction de ses ARNm cibles, en interagissant avec les facteurs d’initiation de la traduction eIF4G et PABP. Le développement d’un nouveau système de traduction in vitro nous a permis de montrer que l’effet d’EB2 sur la traduction nécessite le passage nucléaire de ses ARNm cibles. Ainsi, l’ensemble de nos travaux démontre le rôle clé d’une RBP virale dans le couplage entre les étapes nucléaires et cytoplasmiques de la biogenèse des ARNm. / Post-transcriptional regulation of gene expression is based on a complex and dynamic network of RNA-proteins interactions. A major challenge is to understand the precise contribution of these RNA-binding proteins (RBPs) to each step of mRNA metabolism. During this thesis, we have characterized new functions of the EB2 viral RBP which is essential for the production of the Epstein-Barr virus (EBV). Previous works have shown that EB2 promotes cytoplasmic accumulation of most intronless viral mRNAs. Here, we show that EB2 is not just an mRNA export factor because this RBP also stabilizes its target mRNAs in the nucleus by protecting them from RNA exosome degradation. Our results indicate that in the absence of EB2 : (i) some viral mRNAs are unstable because they contain cryptic splice sites ; (ii) the splicing factor SRSF3 destabilizes these mRNAs by interacting with both the RNA exosome and the Nuclear EXosome Targeting (NEXT) complex. Moreover, we also show that EB2 is associated with polysomes and it strongly stimulates translation of its target mRNAs through interactions with the eIF4G and PABP initiation factors. Interestingly, the development of a new in vitro translational assay allowed us to show that EB2’s translation stimulation requires that EB2 binds its target mRNAs in the nucleus. Taken together, our works demonstrate the key function of a viral RBP in the coordination of the nuclear and cytoplasmic steps of mRNA biogenesis.
43

Novel Functions for the RNA-binding Protein Staufen1 in Skeletal Muscle Biology and Disease

Crawford Parks, Tara January 2016 (has links)
Over the past decade several converging lines of evidence have highlighted the importance of post-transcriptional events in skeletal muscle. This level of regulation is controlled by multi-functional RNA-binding proteins and trans-acting factors. In fact, several RNA-binding proteins are implicated in neuromuscular disorders including myotonic dystrophy type I, spinal muscular atrophy and amyotrophic lateral sclerosis. Therefore, it is necessary to examine the impact of RNA-binding proteins during skeletal muscle development and plasticity in order to understand the consequences linked to their misregulation in disease. Here, we focused on the RNA-binding protein Staufen1, which assumes multiple roles in both skeletal muscle and neurons. We previously demonstrated that Staufen1 is regulated during myogenic differentiation and that its expression is increased in denervated and in myotonic dystrophy type I skeletal muscles. The increased expression of Staufen1 initially appeared beneficial for DM1 since further elevating Staufen1 levels rescued key hallmarks of the disease. However, based on the multi-functional nature of Staufen1, we hypothesized that Staufen1 acts as a disease modifier in DM1. To test this, we investigated the roles of Staufen1 in skeletal muscle biology and their implications for disease. Our data demonstrated that Staufen1 is required during the early stages of muscle development, however its expression must remain low in postnatal skeletal muscle. Interestingly, the overexpression of Staufen1 impaired myogenesis through the regulation of c-myc translation. Since the function of c-myc in oncogenesis is well described, we investigated the role of Staufen1 in cancer biology. In particular, we determined novel functions of Staufen1 in rhabdomyosarcoma tumorigenesis, thus providing the first direct evidence for Staufen1’s involvement in cancer. Moreover, based on Staufen1’s role in myogenic differentiation and in myotonic dystrophy type I, we generated muscle-specific transgenic mice to examine the impact of sustained Staufen1 expression in postnatal skeletal muscle. Staufen1 transgenic mice developed a myopathy characterized by histological and functional abnormalities via atrogene induction and the regulation of PTEN mRNAs. In parallel, we further investigated Staufen1-regulated alternative splicing and our data demonstrated that Staufen1 regulates multiple alternative splicing events in normal and myotonic dystrophy type I skeletal muscles, both beneficial and detrimental for the pathology. Collectively, these findings uncover several novel functions of Staufen1 in skeletal muscle biology and highlight Staufen1’s role as a disease modifier in DM1.
44

Rôle du domaine de type prion de Imp dans la régulation des granules RNP neuronaux / Role of the Prion-like domain of Imp in neuronal RNP granule regulation

Vijayakumar, Jeshlee Cyril 13 November 2018 (has links)
Les ARNms des cellules eucaryotes sont liés à des protéines de liaison aux ARNs (RBPs) et empaquetés au sein d’assemblages macro-moléculaires appelés granules RNP. Dans les cellules neuronales, les granules RNP de transport sont impliqués dans le transport d’ARNms spécifiques jusqu’aux axones et dendrites, ainsi que dans leur traduction locale en réponse à des signaux externes. Bien que peu de choses soient connues sur l’assemblage et la régulation de ces granules in vivo, des résultats récents ont indiqué que la présence de domaines de type prion (PLDs) dans les RBPs facilite les interactions protéines-protéines et protéines-ARN, favorisant ainsi la condensation de complexes solubles en granules RNP. La RBP conservée Imp est un composant central de granules RNP qui sont transportés dans les axones lors du remodelage neuronal chez la drosophile. De plus, la fonction de Imp est nécessaire au remodelage des axones lors de la maturation du système nerveux de drosophile. Une analyse de la séquence de la protéine Imp a révélé qu’en plus de quatre domaines de liaison aux ARNs, Imp contient un domaine C-terminal désordonné enrichi en Glutamines et Serines, deux propriétés caractéristiques des domaines PLDs. Lors de ma thèse, j’ai étudié la fonction de ce PLD dans le contexte de l’assemblage et du transport des granules RNP. J’ai observé en culture de cellules que les granules Imp s’assemblent en absence de PLD, bien que leur nombre et leur taille soient augmentés. Des protéines présentant une séquence PLD mélangée, au contraire, s’accumulent dans des granules au nombre et à la taille normale, indiquant que l’état désordonné de ce domaine, et non sa séquence primaire, est essentiel à l’homéostasie des granules. De plus, des expériences de FRAP réalisées en culture de cellule et in vivo ont révélé que le domaine PLD de Imp favorise la dynamique des granules. In vivo, ce domaine est nécessaire et suffisant à l’accumulation axonale de Imp. Comme montré par une analyse en temps réel, l’absence de domaine PLD aboutit également à une diminution du nombre de granules axonaux motiles. Fonctionnellement, le domaine PLD de Imp est essentiel au remodelage neuronal car des protéines sans ce domaine ne sont pas capables de supprimer les défauts de repousse axonale observés après inactivation de imp. Enfin, la génération d’un variant de Imp dans lequel le domaine PLD a été déplacé en N-terminus a montré que les fonctions du PLD dans le transport des granules et dans leur assemblage sont découplées, et que la modulation des propriétés des granules Imp médiée par le domaine PLD n’est pas nécessaire au remodelage neuronal in vivo. En conclusion, mes résultats ont montré que le domaine PLD de Imp n’est pas nécessaire à l’assemblage des granules RNP Imp, mais régule leur nombre et leur dynamique. De plus, mon travail a mis en évidence une fonction inattendue pour un domaine PLD dans le transport axonal et le remodelage des neurones lors de la maturation du système nerveux. / Eukaryotic mRNAs are bound by RNA Binding Proteins (RBP) and packaged into diverse range of macromolecular assemblies named RNP granules. In neurons, transport RNP granules are implicated in the transport of specific mRNAs to axons or dendrites, and in their local translation in response to external cues. Although little is known about the assembly and regulation of these granules in vivo, growing evidence indicates that the presence of Prion Like domains (PLD) within RBPs favours multivalent protein–protein and protein-RNA interactions, promoting the transition of soluble complexes into RNP granules. The conserved RBP Imp is as a core component of RNP granules that are actively transported to axons upon neuronal remodelling in Drosophila. Furthermore, Imp function was shown to be required for axonal remodelling during Drosophila nervous system maturation. Analyses of the domain architecture of the Imp protein revealed that, in addition to four RNA binding domains (RBD), Imp contains a Cterminal domain showing a striking enrichment in Glutamines and Serines, which is one of the characteristics of a PLD. During my PhD, I explored the function of the PLD in the context of granule assembly and transport. In cultured cells, I observed that Imp granules assembled in the absence of the PLD, however their number and size were increased. Proteins with scrambled PLD sequence accumulated in granules of normal size and number, implying that the degree of disorder of this domain, and not its sequence, is essential for granule homeostasis. Moreover, FRAP experiments, performed on cultured cells and in vivo, revealed that Imp PLD is important to maintain the turnover of these granules. In vivo, this domain is both necessary and sufficient for efficient transport of Imp granules to axons. These defects are associated with a reduction on the number of motile granules in axons. Furthermore, mutant forms lacking the PLD do not rescue the axon remodelling defects observed upon imp loss of function. Finally, a swapping experiment in which I moved Imp PLD from the C-terminus to the N-terminus of the protein revealed that the functions of Imp PLD in granule transport and homeostasis are uncoupled, and that PLD-dependent modulation of Imp granule properties is dispensable in vivo. Together, my results show that Imp PLD of is not required for the assembly of RNP granules, but rather regulates granule number and dynamics. Furthermore, my work uncovered an unexpected in vivo function for a PLD in axonal transport and remodelling during nervous system maturation.
45

Emerging role of RNA-binding proteins in sporadic and rapid progressive Alzheimer’s disease

Younas, Neelam 14 January 2020 (has links)
No description available.
46

Statistical Analysis of PAR-CLIP data

Golumbeanu, Monica January 2013 (has links)
From creation to its degradation, the RNA molecule is the action field of many binding proteins with different roles in regulation and RNA metabolism. Since these proteins are involved in a large number of processes, a variety of diseases are related to abnormalities occurring within the binding mechanisms. One of the experimental methods for detecting the binding sites of these proteins is PAR-CLIP built on the next generation sequencing technology. Due to its size and intrinsic noise, PAR-CLIP data analysis requires appropriate pre-processing and thorough statistical analysis. The present work has two main goals. First, to develop a modular pipeline for preprocessing PAR-CLIP data and extracting necessary signals for further analysis. Second, to devise a novel statistical model in order to carry out inference about presence of protein binding sites based on the signals extracted in the pre-processing step.
47

Role of the Cytoplasmic Polyadenylation Element Binding Proteins in Neuron: A Dissertation

Oruganty, Aparna 26 February 2013 (has links)
Genome regulation is an extremely complex phenomenon. There are various mechanisms in place to ensure smooth performance of the organism. Post-transcriptional regulation of gene expression is one such mechanism. Many proteins bind to mRNAs and regulate their translation. In this thesis, I have focused on the Cytoplasmic Polyadenylation Element Binding family of proteins (CPEB1-4); a group of sequence specific RNA binding proteins important for cell cycle progression, senescence, neuronal function and plasticity. CPEB protein binds mRNAs containing a short Cytoplasmic Polyadenylation Element (CPE) in 3’ untranslated Region (UTR) and regulates the polyadenylation of these mRNAs and thereby controls translation. In Chapter II, I have presented my work on the regulation of mitochondrial function by CPEB. CPEB knockout mice have brain specific defects in mitochondrial function owing to a reduction in Electron transport chain complex I component protein NDUFV2. CPEB controls the translation of this NDUFV2 mRNA and thus affects mitochondrial function. A consequence of this reduced bioenergetics is reduced growth and branching of neurons, again emphasizing the importance of this pathway. Chapter III focuses on the role of CPEB4 in neuronal survival and protection against apoptosis. CPEB4 shuttles between nucleus and cytoplasm and becomes nuclear in response to stimulation with ionotropic glutamate receptors, focal ischemia in vivo and when cultured neurons are deprived of oxygen and glucose; nuclear CPEB4 affords protection against apoptosis in ischemia model. The underlying cause for nuclear translocation is reduction in Endoplasmic Reticulum calcium levels. These studies give an insight into the function and dynamics of these two RNA binding proteins and provide a better understanding of cellular biology.
48

Silencing Defective 2 is an essential gene required for ribosome biogenesis and the regulation of alternative splicing

Floro, Jess 02 February 2022 (has links)
RNA provides the framework for the assembly of some of the most intricate macromolecular complexes within the cell, including the spliceosome and the mature ribosome. The assembly of these complexes relies on the coordinated association of RNA with hundreds of trans-acting protein factors. While some of these trans-acting factors are RNA binding proteins (RBPs), others are adaptor proteins, and others still, function as both. Defects in the assembly of these complexes results in a number of human pathologies including neurodegeneration and cancer. Here, we demonstrate that Silencing Defective 2 (SDE2) is both an RNA binding protein and also a trans-acting adaptor protein that functions to regulate RNA splicing and ribosome biogenesis. SDE2 depletion leads to widespread changes in alternative splicing, defects in ribosomal biogenesis, and ultimately complete loss of cell viability. Our data highlight SDE2 as a previously uncharacterized essential gene required for the assembly and maturation of some of the most fundamental processes in mammalian cells.
49

The Functions and Regulation of mRNA Processing During Male Germ Cell Development

Hannigan, Molly M. 23 May 2019 (has links)
No description available.
50

Exploring the many facets of cell death

Ménard, Isabelle. January 2007 (has links)
No description available.

Page generated in 0.0908 seconds