Spelling suggestions: "subject:"ROS implementatation"" "subject:"ROS implemententation""
1 |
Multi-robot coordination and planning with human-in-the-loop under STL specifications : Centralized and distributed frameworks / Multi-robotkoordination och planering med mänsklig interaktion under STL-specifikationer : Centraliserade och distribuerade ramverkZhang, Yixiao January 2023 (has links)
Recent urbanization and industrialization have brought tremendous pressure and challenges to modern autonomous systems. When considering multiple complex tasks, cooperation and coordination between multiple agents can improve efficiency in a system. In real-world applications, multi-agent systems (MAS) are widely used in various fields, such as robotics, unmanned aerial systems, autonomous vehicles, distributed sensor networks, etc. Unlike traditional MAS systems based on pre-defined algorithms and rules, a special human-in-loop (HIL) based MAS involves human interactions to enhance the system’s adaptability for special scenarios, as well as apply human preferences for robot control. However, existing HIL strategies are primarily based on human involvement at a low level, such as mixed-initiative control and mixed-agent scenarios with both human-driven and intelligent robots. There are fewer investigations on applying HIL in high-level coordination. In particular, designing a coordination strategy for multi-task multi-agent scenarios, which can also deal with real-time human commands, will be one of the key topics of this Master’s thesis project. In this thesis work, different kinds of tasks described by signal temporal logic (STL) are created for agents, which can be enforced by control barrier function (CBF) constraints. Both centralized and distributed frameworks are designed for agent coordination. In detail, the centralized strategy is developed for machine-to-infrastructure (M2I) communication, by using the nonlinear model predictive control (NMPC) method to obtain collision-free trajectories. The distributed strategy utilizing graph theory is proposed for machine-to-machine (M2M), in order to reduce computation time by offloading. Most importantly, a HIL model is generated for both frameworks to apply online human commands to the coordination, with a novel task allocation protocol. Simulations and experiments are carried out on both Matlab and Python-based ROS simulators, to show that proposed frameworks can achieve obvious performance advantages in safety, smoothness, and stability for task completion. Numerical results are provided to validate the feasibility and applicability of our algorithms. / Den senaste urbaniseringen och industrialiseringen har medfört enormt tryck och utmaningar för moderna autonoma system. Vid beaktande av flera komplexa uppgifter kan samarbete och samordning mellan flera agenter förbättra effektiviteten i ett system. I verkliga tillämpningar används multiagent-system (MAS) i stor utsträckning inom olika områden, såsom robotik, obemannade luftfarkoster, autonoma fordon, distribuerade sensorsystem etc. Till skillnad från traditionella MAS-system baserade på fördefinierade algoritmer och regler, innebär ett särskilt människa-i-loop (HIL)-baserat MAS mänsklig interaktion för att förbättra systemets anpassningsförmåga till speciella scenarier samt anpassa mänskliga preferenser för robotstyrning. Emellertid är befintliga HIL-strategier främst baserade på mänsklig inblandning på en låg nivå, såsom mixad-initiativkontroll och mixade agentscenarier med både människa-drivna och intelligenta robotar. Det finns färre undersökningar om att tillämpa HIL på högnivåkoordination. Särskilt att utforma en koordineringsstrategi för fleruppgiftsfleragent-scenarier, som också kan hantera mänskliga kommandon i realtid, kommer att vara ett av huvudämnena för detta masterprojekt. I detta examensarbete skapas olika typer av uppgifter beskrivna av signaltemporallogik (STL) för agenter, som kan upprätthållas genom styrbarriärfunktions (CBF) -begränsningar. Både centraliserade och distribuerade ramverk utformas för agentkoordination. Mer specifikt utvecklas den centraliserade strategin för maskin-till-infrastruktur (M2I)-kommunikation genom att använda icke-linjär modellprediktiv reglering (NMPC) för att erhålla kollisionsfria trajektorier. Den distribuerade strategin med användning av grafteori föreslås för maskin-till-maskin (M2M) för att minska beräkningstiden genom avlastning. Viktigast av allt genereras en HIL-modell för båda ramverken för att tillämpa online-mänskliga kommandon på koordinationen med en ny protokoll för uppgiftstilldelning. Simuleringar och experiment utförs på både Matlab och Python-baserade ROS-simulatorer för att visa att de föreslagna ramverken kan uppnå tydliga prestandafördelar när det gäller säkerhet, smidighet och stabilitet för uppgiftsslutförande. Numeriska resultat presenteras för att validera genomförbarheten och tillämpligheten hos våra algoritmer.
|
2 |
Control barrier function-enabled human-in-the-loop control for multi-robot systems : Centralized and distributed approaches / Kontrollbarriärfunktion som möjliggör mänsklig kontroll i kretsloppet för flerrobotsystem : Centraliserade och distribuerade tillvägagångssättNan Fernandez-Ayala, Victor January 2022 (has links)
Autonomous multi-robot systems have found many real-world applications in factory settings, rescue tasks and light shows. Albeit these successful applications, the multi-robot system is usually pre-programmed with limited flexibility for online adaptation. Having a human-in-the-loop feature would provide additional flexibility such as handling unexpected situations, detecting and correcting bad behaviours and supporting the automated decision making. In addition, it would also allow for an extra level of cooperation between the robots and the human that facilitates certain real-world tasks, for example in the agricultural sector. Control barrier functions (CBFs), as a convenient modular-design tool, will be mainly explored. CBFs have seen a lot of development in recent years and extending them to the field of multi-robot systems is still new. In particular, creating an original distributed approach, instead of a centralized one, will be one of the key topics of this Master’s thesis project. In this thesis work, several multi-robot coordination protocols and safety constraints will be identified and these constraints will be enforced using a control barrier function-enabled mixer module. This module will take in the commands from both the planner and the human operator, prioritizing the commands from the human operator as long as the safety constraints are not violated. Otherwise, the mixer module will filter the commands and send out a safe alternative. The underlying multi-robot tasks are expected to be achieved whenever feasible. Simulations in ROS, Python and MATLAB environments are developed to experimentally assess the safety and optimality of the system, and experiments with real robots in a lab are performed to show the applicability of this algorithm. Finally, a distributed approach to the mixer module has been developed, based on previous research and extended to allow for more versatility. This is of key importance since it would allow each robot to compute its own controller based on local information, making the multi-robot system both more robust and flexible to be deployed on real-world applications. / Autonoma multirobotsystem har fått många verkliga tillämpningar i fabriksmiljöer, räddningsuppdrag och ljusshower. Trots dessa framgångsrika tillämpningar är multirobotsystemet vanligtvis förprogrammerat med begränsad flexibilitet för anpassning online. En människa i loopen skulle ge ytterligare flexibilitet, t.ex. när det gäller att hantera oväntade situationer, upptäcka och korrigera dåliga beteenden och stödja det automatiska beslutsfattandet. Dessutom skulle det också möjliggöra en extra samarbetsnivå mellan robotarna och människan som underlättar vissa verkliga uppgifter, till exempel inom jordbrukssektorn. Kontrollbarriärfunktioner (CBF), som ett bekvämt verktyg för modulbaserad utformning, kommer huvudsakligen att undersökas. CBF:er har utvecklats mycket under de senaste åren och det är fortfarande nytt att utvidga dem till flerrobotsystem. Att skapa ett originellt distribuerat tillvägagångssätt i stället för ett centraliserat kommer att vara ett av de viktigaste ämnena i detta examensarbete. I detta examensarbete kommer flera samordningsprotokoll och säkerhetsbegränsningar för flera robotar att identifieras och dessa begränsningar kommer att upprätthållas med hjälp av en mixermodul med kontrollbarriärfunktion. Denna modul kommer att ta emot kommandon från både planeraren och den mänskliga operatören och prioritera kommandon från den mänskliga operatören så länge säkerhetsbegränsningarna inte överträds. I annat fall kommer mixermodulen att filtrera kommandona och skicka ut ett säkert alternativ. De underliggande multirobotuppgifterna förväntas uppnås närhelst det är möjligt. Simuleringar i ROS-, Python- och MATLAB-miljöerna utvecklas för att experimentellt bedöma systemets säkerhet och optimalitet, och experiment med riktiga robotar i ett labb utförs för att visa algoritmens tillämpbarhet. Slutligen har ett distribuerat tillvägagångssätt för mixermodulen utvecklats, baserat på tidigare forskning och utökat för att möjliggöra större mångsidighet. Detta är av central betydelse eftersom det skulle göra det möjligt för varje robot att beräkna sin egen styrning utifrån lokal information, vilket gör systemet med flera robotar både mer robust och flexibelt för att kunna användas i verkliga tillämpningar.
|
Page generated in 0.1239 seconds