• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rab8 Mediates TRPV4 Vesicle Trafficking to the Plasma Membrane in HGF-Stimulated MDCK Cells

Haws, Hillary Jean 01 March 2016 (has links)
Epithelial to mesenchymal transition (EMT) is a process whereby epithelial cells, which act collectively through robust cell–cell interactions, take on mesenchymal characteristics, breaking cell–cell junctions to become solitary, invasive and motile. Our previous results show that a transient increase in calcium influxes through TRP channels at the plasma membrane is required for hepatocyte growth factor (HGF)– stimulated EMT. Since this transient increase requires an intact microtubule cytoskeleton, we propose that HGF stimulation results in the mobilization of calcium channels to the plasma membrane from an intracellular compartment via microtubule–dependent vesicle trafficking. Through immunofluorescence, we show that prior to HGF treatment, TRPV4 localizes to a perinuclear compartment that stains for rab11. After HGF stimulation, this colocalization is reduced and TRPV4 localizes more precisely to fibrous structures. Similarly, rab8 staining is seen throughout the cytoplasm prior to HGF treatment, but localizes primarily to tubular structures after HGF stimulation. This is indicative of endocytic recycling of TRPV4 via rab8. MDCK cells null for rab8 activator, rabin8, were developed using the CRISPR system and then analyzed for changes in epithelial scattering and trafficking of ion channels to the plasma membrane following HGF stimulation. Rabin8 KO cells had a decrease in TRPV4 vesicle trafficking. While rabin8 KO cells did undergo HGF-induced spreading and some disassembly of cell-cell junctions, they lost all motility. Also, HGF-treated rabin8 KO cells had similar calcium levels to untreated WT cells, which had fewer calcium spikes than HGF-treated WT cells. ERK1/2, a known downstream effector of HGF stimulation, has been shown to activate rabin8, and so we tested the effect of an ERK1/2 inhibitor on HGF-induced WT cells as well. These cells had decreased TRPV4 vesicle trafficking and loss of motility, similar to rabin8 KO cells, indicating that ERK1/2 may act upstream of rabin8 and rab8 in this pathway. Our results indicate that TRPV4 undergoes endocytic recycling via rab8 to the cell surface to allow a necessary calcium influx within one hour of HGF stimulation in MDCK cells, leading to EMT.
2

Regulation of GRAF1 membrane sculpting function during cell movement / Reglering av den membranskulpterande funktionen hos GRAF1 vid cellrörelse

Francis, Monika K. January 2015 (has links)
All eukaryotic cells rely on endocytic events to satisfy a constant need for nutrient and fluid uptake from their surroundings. Endocytosis-dependent turnover of cell surface constituents also serves to control signal transduction and establish morphological changes in response to extracellular stimuli. During endocytosis, distinct protein machineries re-sculpt the plasma membrane into vesicular carriers that enclose molecules that are to be taken up into the cell. Besides those produced from the canonical clathrin-mediated endocytic machinery, it is becoming increasingly clear that other membrane carriers exist. The indisputable connection between the function of these uptake systems and various disease states, highlights why it is so important to increase our knowledge about the underlying molecular machineries. The aim of this thesis was therefore to characterise the function of GRAF1, a protein suggested to be a tumour suppressor due to that the gene has been found to be mutated in certain cancer patients. My work focused on understanding how this protein operates during formation of clathrin-independent carriers, with possible implications for disease development. Previous in vitro studies showed that GRAF1 harbours a GTPase activating domain to inactivate Rho GTPase Cdc42, a major actin cytoskeleton regulator. Herein, microscopy based approaches used to analyse HeLa cells demonstrated the importance of a transient interaction between GRAF1 and Cdc42 for proper processing of GRAF1-decorated carriers. Although GRAF1-mediated inactivation of Cdc42 was not vital for the budding of carriers from the plasma membrane, it was important for carrier maturation. In addition, studies of purified GRAF1 and its association with lipid bilayers identified a membrane scaffolding-dependent oligomerisation mechanism, with the ability to sculpt membranes. This was consistent with the assumption that GRAF1 possesses an inherent banana shaped membrane binding domain. Remarkably, this function was autoinhibited and in direct competition with the Cdc42 interaction domain. Finally, other novel GRAF1 interaction partners were identified in this study. Interestingly, many of these partners are known to be associated with protein complexes involved in cell adherence, spreading and migration. Although never actually seen localising to mature focal adhesions that anchor cells to their growth surface, dynamic GRAF1 carriers were captured travelling to and from such locations. Moreover, GRAF1 was recruited specifically to smaller podosome-like structures. Consistent with this, the tracking of GRAF1 in live cells uncovered a clear pattern of dynamic carrier formation at sites of active membrane turnover – notably protrusions at the cell periphery. Furthermore, the silencing of GRAF1 gave rise to cells defective in spreading and migration, indicating a targeting of GRAF1-mediated endocytosis to aid in rapid plasma membrane turnover needed for morphological changes that are a prerequisite for cell movement. Since these cells exhibited an increase in active Rab8, a GTPase responsible for polarised vesicle transport, the phenotype could also be explained by a defect in Rab8 trafficking that results in hyperpolarisation. Taken together, the spatial and temporal regulation of GRAF1 membrane sculpting function is likely to be accomplished via its membrane binding propensity, in concert with various protein interactions. The importance of GRAF1 in aiding membrane turnover during cell movement spans different functional levels – from its local coordination of membrane and actin dynamics by interacting with Cdc42, to its global role in membrane lipid trafficking.
3

The Golgi associated RAB6 GTPase as a general regulator of post-Golgi secretion / La protéine RAB6-GTPase : un régulateur général de la sécrétion post-Golgienne

Kasri, Amal 24 November 2017 (has links)
Le trafic intracellulaire est un processus fondamental qui maintient l'homéostasie cellulaire. Les RAB GTPases sont des régulateurs clés du trafic intracellulaire. RAB6 est la RAB résidente la plus abondante du Golgi. RAB6 est un régulateur clé de l'homéostasie Golgienne. Mon projet de thèse s'est intéressé à l'étude de la fonction de RAB6 dans la sécrétion post-Golgienne. Des études précédentes ont montré que la déplétion de RAB6 inhibe l'arrivée à la membrane plasmique de différents cargos : dans des cellules HeLa, NPY et VSV-G, et TNFα dans les macrophages. Nous avons donc émis l'hypothèse que RAB6 pourrait être un régulateur général de la sécrétion post-Golgienne. A l'aide de cellules MEFs RAB6 KO, nous avons d'abord montré que la sécrétion de toutes les protéines nouvellement synthétisées est inhibée. Pour comprendre les mécanismes entraînant cet effet, nous avons étudié le rôle de RAB6 dans le transport post-Golgien de trois types différents de cargos : GPI-APs (PLAP et CD59), collagen X, une protéine soluble, et une protéine transmembranaire TNFα. Afin de synchroniser le transport de cargos, nous avons utilisé le système RUSH. Ainsi, nous avons montré que RAB6 est présent sur les vésicules post-Golgiennes contenant les 3 types de cargos et que la déplétion de RAB6 affecte leur sécrétion. Les effecteurs de RAB6 sont aussi impliqués: Myosine II dans leur fission du Golgi, KIF5B dans leur transport vers la périphérie cellulaire, ELKS dans leur arrimage à la membrane plasmique. Finalement, nous avons pu montrer que les 3 cargos sont présents dans les mêmes vésicules post-Golgiennes avec RAB6. Ces résultats montrent que RAB6 régule la sécrétion de différents cargos. / Intracellular trafficking is a fundamental process which ensures cell homeostasis. RAB GTPases are key regulators of intracellular trafficking. RAB6 is the most abundant Golgi resident RAB and is a key regulator of Golgi homeostasis. My Ph.D project focused on understanding the function of RAB6 in post-Golgi secretion.Previous reports have shown that RAB6 depletion impairs the arrival at the plasma membrane of different cargoes: in HeLa cells, NPY and VSV-G and TNFα in macrophages. We thus hypothesized that RAB6 could be a general regulator of post-Golgi transport steps. Using MEF cells from RAB6 KO mice, we first showed that the secretion of all newly synthesized proteins is affected. To decipher the mechanisms leading to this inhibition, we have then investigated the role of RAB6 in the post-Golgi transport of three different classes of proteins, GPI-anchored proteins (such as Placental Alkaline phosphatase or PLAP and CD59), collagen X, a soluble protein, and the transmembrane protein TNFα. In order to synchronize transport of newly-synthetized cargoes along the secretory pathway, we used the RUSH system. Here, we show that RAB6 is present on post Golgi vesicles containing the three types of cargo and that RAB6 depletion affects their secretion to the plasma membrane. RAB6 effectors are also implicated: Myosin II for their fission from the Golgi, KIF5B for their transport to the cell periphery, ELKS/RAB2IP2 for their docking with the plasma membrane. Finally, we could show that these three cargoes are present in the same post-Golgi transport carriers with RAB6. Altogether, these results show that RAB6 regulates the secretion of a wide number of cargo proteins.

Page generated in 0.0268 seconds