Spelling suggestions: "subject:"mad2"" "subject:"ad2""
1 |
Mécanismes de l'activation de la transcription in vivo par le Médiateur / Mecanisms of transcription activation in vivo by MediatorEyboulet, Fanny 19 September 2014 (has links)
Chez les eucaryotes, la synthèse des ARN messagers (ARNm) est un processus hautement régulé en réponse à la fixation d’activateurs spécifiques sur des régions régulatrices. Cette étape permet le recrutement de co-activateurs, des facteurs généraux de la transcription (GTFs) et de l’ARN polymérase II (Pol II) pour former le complexe de préinitiation (PIC). Le Médiateur est un complexe co-activateur essentiel à ce processus et bien qu’il ait fait l’objet de nombreuses études ces dernières années, sa complexité a empêché de parvenir à une compréhension détaillée de son mécanisme de fonctionnement in vivo. Au cours de ma thèse, je me suis intéressée à la sous-unité Med17 qui joue un rôle central au sein du module de tête du Médiateur et interagit directement avec la Pol II. Nous avons construit une collection de mutants thermosensibles de cette sous-unité chez la levure Saccharomyces cerevisiae, que nous avons ensuite caractérisés par différentes approches de biologie moléculaire et génomique fonctionnelle. Nos analyses par ChIP-seq montrent que le Médiateur influence indépendamment le recrutement et/ou la stabilisation de la TBP ainsi que des modules cœur et kinase de TFIIH sur le génome. Ces résultats indiquent que, contrairement à la séquence d’assemblage linéaire observée in vitro, l’assemblage du PIC in vivo est un processus à plusieurs étapes non-séquentielles et que le Médiateur est important pour orchestrer l’arrivée des différents composants du PIC. Par ailleurs, nous avons mis en évidence un contact direct entre le Médiateur et Rad2/XPG, une endonucléase qui intervient dans la réparation de l’ADN. Une analyse à l’échelle du génome a révélé que cette protéine est présente sur les gènes de classe II, en absence de stress génotoxique et que sa localisation génomique corrèle avec celle du Médiateur. Nous avons ainsi démontré que le Médiateur est important pour le recrutement de Rad2, suggérant un nouveau rôle pour ce complexe dans la réparation de l’ADN, en plus de son rôle de co-activateur dans la transcription par la Pol II. / In eukaryotes, the synthesis of messenger RNA (mRNA) is highly regulated in response to the binding of specific activators to regulatory regions. This step allows the recruitment of coactivators, general transcription factors (GTFs) and RNA polymerase II (Pol II) to form the preinitiation complex (PIC). Mediator is a co-activator complex essential to this process and although it has been studied intensively during the last few years, its complexity has precluded a detailed understanding of the molecular mechanisms of its function in vivo. During my PhD, I focused on the Med17 subunit which plays a central role within the Mediator head module and interacts directly with Pol II. We obtained a large collection of temperature-sensitive mutants of this subunit in the yeast Saccharomyces cerevisiae, and then characterized these mutants by different molecular biology and functional genomics approaches. Our ChIP-seq analyses show that Mediator influences independently the recruitment and/or the stabilization of TBP as well as TFIIH core and kinase modules on the genome. These results indicate that, unlike a linear sequence observed in vitro, in vivo the PIC assembly is a non-sequential multistep process and that Mediator is important to orchestrate the recruitment of different PIC components. Furthermore, we identified a direct contact between Mediator and Rad2/XPG, an endonuclease involved in DNA repair. A genome-wide analysis reveals that this protein is present on class II genes in the absence of genotoxic stress, and that its genomic localization correlates with that of Mediator. We thus demonstrated that Mediator is important for Rad2 recruitment, suggesting a new role for this complex in DNA repair, in addition to its co-activator role in Pol II transcription.
|
2 |
Study of the molecular mechanisms linking transcription and DNA repair in Saccharomyces cerevisiae / Etude des mécanismes moléculaires liant la transcription et la réparation de l’ADN chez la levure Saccharomyces cerevisiaeGopaul, Diyavarshini 01 October 2018 (has links)
La voie de réparation par excision de nucléotides (NER) répare les lésions qui distordent la double hélice d’ADN notamment ceux induits par l’irradiation UV. Le NER est subdivisé en deux sous-voies : GG-NER (Global Genome Repair) et TC-NER (Transcription-Coupled Repair). La sous-voie GG-NER enlève les dommages à l’ADN dans l’ensemble du génome. La sous-voie TC-NER répare les dommages sur le brin transcrit qui interfèrent avec la progression de l’ARN Pol II. Les défauts de la voie NER peuvent conduire à l’apparition de pathologies graves. Par exemple, des mutations dans le gène XPG, codant une 3’ endonucléase impliquée dans la voie NER, peuvent mener au xeroderma pigmentosum (XP) associé ou non au syndrome de Cockayne (CS).Récemment, le laboratoire a découvert un lien fonctionnel entre Rad2, homologue chez la levure Saccharomyces cerevisiae de la protéine XPG humaine, et le Médiateur (Eyboulet et al., 2013). Le Médiateur est un complexe multiprotéique nécessaire à la régulation de la transcription dépendante de l’ARN Pol II. Cette étude a suggéré que le Médiateur est impliqué dans la sous-voie TC-NER en facilitant le recrutement de Rad2 au niveau des régions transcrites.Mon projet de thèse visait à étudier les mécanismes moléculaires qui lient la transcription et la réparation de l’ADN. Plus précisément, d’investiguer le lien fonctionnel entre le Médiateur et la machinerie du NER chez S. cerevisiae.Lors du TC-NER, l’ARN Pol II est le premier facteur signalant le dommage à l’ADN. De plus, le Médiateur et Rad2 interagissent avec l’ARN Pol II. Pour déterminer le lien fonctionnel entre ces composants, nous avons utilisé des approches de génétique et génomique dans les mutants de TFIIH (kin28), de l’ARN Pol II (rpb9) and du Médiateur (med17). Nos résultats nous ont permis de proposer un modèle dans lequel Rad2 est recruté au niveau des régions régulatrices enrichies par le Médiateur, et Rad2 est ensuite transféré au niveau des régions transcrites de manière dépendante à l’ARN Pol II. De plus, ces résultats suggèrent que le rôle du Médiateur dans la transcription est fortement lié à son rôle dans la réparation de l’ADN.Ensuite, nous avons montré que le lien entre le Médiateur et la machinerie du NER peut être étendu à d’autres protéines du NER notamment en démontrant une interaction physique entre le Médiateur et Rad1/XPF, Rad10/ERCC1 ou Rad26/CSB, en l’absence des UV. Tout comme Rad2, nous avons démontré que Rad1 et Rad10 n’ont pas de rôle majeur dans la transcription. Pour approfondir le lien entre ces protéines du NER et le Médiateur, des expériences de ChIP-sequencing ont été réalisées. Nous avons observé que le Médiateur est présent au niveau de certaines régions qui sont aussi enrichies par ces protéines du NER. Après l’induction des dommages par UV, les interactions entre le Médiateur et la machinerie du NER reste inchangées par rapport aux conditions en l’absence des UV. De plus grâce à nos expériences de ChIP, nous avons observé un changement de la liaison à la chromatine des protéines du NER et du Médiateur après l’irradiation aux UV. Des expériences de ChIP-sequencing seront réalisées pour avoir une vue globale de ces changements.En conclusion, nous avons solidifié le lien fonctionnel entre Rad2, le Médiateur et l’ARN Pol II par rapport à la réparation couplée à la transcription. Nous avons aussi démontré que le Médiateur interagit avec d’autres protéines du NER (Rad1/XPF, Rad10/ERCC1 et Rad26/CSB) et colocalise avec eux sur certaines régions de la chromatine. En somme, notre projet place le Médiateur à l’interface de la transcription et de la réparation de l’ADN, deux processus essentiels dont les défauts peuvent mener à des pathologies graves. / Nucleotide excision repair (NER) is a well conserved pathway that removes helix-distorting DNA lesions such as those arising upon UV irradiation. Global genome repair subpathway (GG-NER) removes the DNA lesions in the genome overall, and transcription-coupled repair (TC-NER) removes the DNA lesions interfering with Pol II progression through actively-transcribed regions. Defects in the NER pathway may lead to severe human pathologies. For instance, mutations in human XPG gene, encoding a 3’ endonuclease essential for NER, give rise to xeroderma pigmentosum (XP) sometimes associated with Cockayne syndrome (CS). Recently, the laboratory discovered a functional link between Rad2/XPG and Mediator in Saccharomyces cerevisiae (Eyboulet et al., 2013). Mediator is a large multisubunit complex essential for transcription regulation. We suggest that Mediator is involved in TC-NER by facilitating Rad2 recruitment to transcribed genes.My PhD work aimed at addressing the molecular mechanisms of this link between transcription and DNA repair, especially by investigating the functional interplay between Mediator and the NER machinery in yeast Saccharomyces cerevisiae.RNA Pol II is the first complex of TC-NER that encounters the DNA damage. Moreover, both Mediator and Rad2/XPG interact with Pol II. However, a functional interplay between all these components related to TC-NER remained to be determined. Using genetic and genomic approaches, in particular ChIP-sequencing in TFIIH (kin28), RNA Pol II (rpb9) and Mediator (med17) mutants, our work led us to propose a model where Rad2 shuttles between Mediator on upstream activating sequence (UAS) and RNA Pol II on transcribed regions (Georges, Gopaul et al., under review). Our results also suggest that Mediator functions in transcription and DNA repair are closely related.Moreover, we showed that Mediator’s link to NER can be extended to other NER proteins. Indeed, we identified a physical interaction between Mediator and other NER proteins, including Rad1/XPF, Rad10/ERCC1 and Rad26/CSB in the absence of UV irradiation. Similarly to Rad2, we demonstrated that Rad1 and Rad10 do not have a major role in yeast transcription. To further study the functional link between Mediator and the NER machinery, we obtained the genomic distribution of different NER proteins by ChIP-sequencing. We found that some promoter regions are co-occupied by Mediator and these NER proteins, and that relationships between Mediator and these NER proteins are more complex than between Mediator and Rad2. We also investigated if physical interactions between Mediator and NER proteins are modified after UV, we did not observe any significant change. Furthermore, we observed that the chromatin binding profiles of NER proteins and Mediator are modified after UV-irradiation. ChIP-sequencing will be carried out to get a genome-wide view of their chromatin binding profiles.In conclusion, we have strengthened the link between Rad2/XPG, Mediator and RNA Pol II, providing mechanistic insights into functional interplay between these components related to transcription-coupled repair, and showed that the link between Mediator and the NER machinery can be extended to other proteins. Taken together, our results suggest a close relation between Mediator functions in transcription and in NER, two fundamental processes dysfunction of which leads to human diseases.
|
3 |
Caractérisation structurale et fonctionnelle des interactions impliquant TFIIH et la machinerie de réparation de l’ADNLafrance-Vanasse, Julien 09 1900 (has links)
La réparation de l’ADN par excision des nucléotides (NER) est un mécanisme capable de retirer une large variété de lésions causant une distorsion de la double hélice, comme celles causées par les rayons ultraviolets (UV). Comme toutes les voies de réparation de l’ADN, la NER contribue à la prévention de la carcinogénèse en prévenant la mutation de l’ADN. Lors de ce processus, il y a d’abord reconnaissance de la lésion par la protéine XPC/Rad4 (humain/levure) qui recrute ensuite TFIIH. Ce complexe déroule l’ADN par son activité hélicase et recrute l’endonucléase XPG/Rad2 ainsi que d’autres protéines nécessaires à l’excision de l’ADN. Lors de son arrivée au site de lésion, XPG/Rad2 déplace XPC/Rad4.
TFIIH agit également lors de la transcription de l’ADN, entre autres par son activité hélicase. Outre cette similarité de la présence de TFIIH lors de la transcription et la réparation, il est possible de se demander en quoi les deux voies sont similaires. Nous nous sommes donc intéressés aux interactions impliquant TFIIH et la machinerie de réparation de l’ADN.
Nous avons donc entrepris une caractérisation structurale et fonctionnelle de ces interactions. Nous avons découvert que Rad2 et Rad4 possèdent un motif d’interaction en nous basant sur d’autres interactions de la sous-unité Tfb1 de TFIIH. Par calorimétrie à titrage isotherme, nous avons observé que les segments de ces deux protéines contenant ce motif interagissent avec une grande affinité au domaine PH de Tfb1. Le site de liaison de ces segments sur Tfb1PH est très semblable au site de liaison du domaine de transactivation de p53 et au domaine carboxy-terminal de TFIIEα avec Tfb1PH, tel que démontré par résonance magnétique nucléaire (RMN). De plus, tous ces segments peuvent faire compétition les uns aux autres pour la liaison à Tfb1PH. Nous avons aussi démontré in vivo chez la levure qu’une délétion de Tfb1PH crée une sensibilité aux radiations UV. De plus, la délétion de multiples segments de Rad2 et Rad4, dont les segments d’interaction à Tfb1PH, est nécessaire pour voir une sensibilité aux rayons UV. Ainsi, de multiples interactions sont impliquées dans la liaison de Rad2 et Rad4 à TFIIH. Finalement, les structures des complexes Rad2-Tfb1PH et Rad4-Tfb1PH ont été résolues par RMN. Ces structures sont identiques entre elles et impliquent des résidus hydrophobes interagissant avec des cavités peu profondes de Tfb1PH. Ces structures sont très semblables à la structure de TFIIEα-p62PH.
Ces découvertes fournissent ainsi un lien important entre la transcription et la réparation de l’ADN. De plus, elles permettent d’émettre un modèle du mécanisme de déplacement de XPC/Rad4 par XPG/Rad2 au site de dommage à l’ADN. Ces connaissances aident à mieux comprendre les mécanismes de maintient de la stabilité génomique et peuvent ainsi mener à développer de nouvelles thérapies contre le cancer. / The nucleotide excision repair pathway (NER) is a mechanism capable of removing a wide variety of helix-distorting lesions, such as those caused by ultraviolet irradiation (UV). As all DNA repair pathways, NER contributes to the prevention of carcinogenesis by preventing DNA mutation. During this process, the lesion is first recognized by the protein XPC/Rad4 (human/yeast), which then recruits TFIIH. This complex unwinds the DNA with its helicase activity and then recruits the endonuclease XPG/Rad2 and other proteins necessary for DNA excision. Upon arrival at the lesion site, XPG/Rad2 displaces XPC/Rad4.
TFIIH also acts in DNA transcription, using its helicase activity. In addition to the similarity of the presence of TFIIH in transcription and DNA repair, it is possible to ask ourselves how the two pathways are similar. We were interested in the interactions involving TFIIH and the DNA repair machinery.
We have therefore undertaken a structural and functional characterization of these interactions. We have found that Rad2 and Rad4 have a motif of interaction based on other interactions of the Tfb1 subunit of TFIIH. Using isothermal titration calorimetry, we found that segments of these two proteins containing this motif interact with high affinity to the PH domain of Tfb1. The binding site of these segments is very similar to Tfb1PH binding site of transactivation domain of p53 and the carboxyl-terminal domain of TFIIEα with Tfb1PH, as demonstrated by nuclear magnetic resonance (NMR). In addition, these segments can compete with each other for binding to Tfb1PH. We also demonstrated in vivo that deletion of Tfb1PH in yeast creates a sensitivity to UV irradiation. In addition, the deletion of multiple segments of Rad2 and Rad4, including segments of interaction Tfb1PH, is required to observe a sensitivity to UV. Thus, multiple interactions are involved in the binding of TFIIH to Rad2 and Rad4. Finally, the structures of the Rad2-Tfb1PH and Rad4-Tfb1PH complexes were solved by NMR. These structures are identical to each other and involve hydrophobic residues interacting with shallow grooves on Tfb1PH. These structures are very similar to the structure of TFIIEα-p62PH.
These findings provide an important mechanistic link between transcription and DNA repair. In addition, they provide a model of the mechanism of the displacement of XPC/Rad4 by XPG/Rad2 at the damaged site. This knowledge helps to better understand the mechanisms of genomic stability and can lead to novel cancer therapies.
|
4 |
Caractérisation structurale et fonctionnelle des interactions impliquant TFIIH et la machinerie de réparation de l’ADNLafrance-Vanasse, Julien 09 1900 (has links)
La réparation de l’ADN par excision des nucléotides (NER) est un mécanisme capable de retirer une large variété de lésions causant une distorsion de la double hélice, comme celles causées par les rayons ultraviolets (UV). Comme toutes les voies de réparation de l’ADN, la NER contribue à la prévention de la carcinogénèse en prévenant la mutation de l’ADN. Lors de ce processus, il y a d’abord reconnaissance de la lésion par la protéine XPC/Rad4 (humain/levure) qui recrute ensuite TFIIH. Ce complexe déroule l’ADN par son activité hélicase et recrute l’endonucléase XPG/Rad2 ainsi que d’autres protéines nécessaires à l’excision de l’ADN. Lors de son arrivée au site de lésion, XPG/Rad2 déplace XPC/Rad4.
TFIIH agit également lors de la transcription de l’ADN, entre autres par son activité hélicase. Outre cette similarité de la présence de TFIIH lors de la transcription et la réparation, il est possible de se demander en quoi les deux voies sont similaires. Nous nous sommes donc intéressés aux interactions impliquant TFIIH et la machinerie de réparation de l’ADN.
Nous avons donc entrepris une caractérisation structurale et fonctionnelle de ces interactions. Nous avons découvert que Rad2 et Rad4 possèdent un motif d’interaction en nous basant sur d’autres interactions de la sous-unité Tfb1 de TFIIH. Par calorimétrie à titrage isotherme, nous avons observé que les segments de ces deux protéines contenant ce motif interagissent avec une grande affinité au domaine PH de Tfb1. Le site de liaison de ces segments sur Tfb1PH est très semblable au site de liaison du domaine de transactivation de p53 et au domaine carboxy-terminal de TFIIEα avec Tfb1PH, tel que démontré par résonance magnétique nucléaire (RMN). De plus, tous ces segments peuvent faire compétition les uns aux autres pour la liaison à Tfb1PH. Nous avons aussi démontré in vivo chez la levure qu’une délétion de Tfb1PH crée une sensibilité aux radiations UV. De plus, la délétion de multiples segments de Rad2 et Rad4, dont les segments d’interaction à Tfb1PH, est nécessaire pour voir une sensibilité aux rayons UV. Ainsi, de multiples interactions sont impliquées dans la liaison de Rad2 et Rad4 à TFIIH. Finalement, les structures des complexes Rad2-Tfb1PH et Rad4-Tfb1PH ont été résolues par RMN. Ces structures sont identiques entre elles et impliquent des résidus hydrophobes interagissant avec des cavités peu profondes de Tfb1PH. Ces structures sont très semblables à la structure de TFIIEα-p62PH.
Ces découvertes fournissent ainsi un lien important entre la transcription et la réparation de l’ADN. De plus, elles permettent d’émettre un modèle du mécanisme de déplacement de XPC/Rad4 par XPG/Rad2 au site de dommage à l’ADN. Ces connaissances aident à mieux comprendre les mécanismes de maintient de la stabilité génomique et peuvent ainsi mener à développer de nouvelles thérapies contre le cancer. / The nucleotide excision repair pathway (NER) is a mechanism capable of removing a wide variety of helix-distorting lesions, such as those caused by ultraviolet irradiation (UV). As all DNA repair pathways, NER contributes to the prevention of carcinogenesis by preventing DNA mutation. During this process, the lesion is first recognized by the protein XPC/Rad4 (human/yeast), which then recruits TFIIH. This complex unwinds the DNA with its helicase activity and then recruits the endonuclease XPG/Rad2 and other proteins necessary for DNA excision. Upon arrival at the lesion site, XPG/Rad2 displaces XPC/Rad4.
TFIIH also acts in DNA transcription, using its helicase activity. In addition to the similarity of the presence of TFIIH in transcription and DNA repair, it is possible to ask ourselves how the two pathways are similar. We were interested in the interactions involving TFIIH and the DNA repair machinery.
We have therefore undertaken a structural and functional characterization of these interactions. We have found that Rad2 and Rad4 have a motif of interaction based on other interactions of the Tfb1 subunit of TFIIH. Using isothermal titration calorimetry, we found that segments of these two proteins containing this motif interact with high affinity to the PH domain of Tfb1. The binding site of these segments is very similar to Tfb1PH binding site of transactivation domain of p53 and the carboxyl-terminal domain of TFIIEα with Tfb1PH, as demonstrated by nuclear magnetic resonance (NMR). In addition, these segments can compete with each other for binding to Tfb1PH. We also demonstrated in vivo that deletion of Tfb1PH in yeast creates a sensitivity to UV irradiation. In addition, the deletion of multiple segments of Rad2 and Rad4, including segments of interaction Tfb1PH, is required to observe a sensitivity to UV. Thus, multiple interactions are involved in the binding of TFIIH to Rad2 and Rad4. Finally, the structures of the Rad2-Tfb1PH and Rad4-Tfb1PH complexes were solved by NMR. These structures are identical to each other and involve hydrophobic residues interacting with shallow grooves on Tfb1PH. These structures are very similar to the structure of TFIIEα-p62PH.
These findings provide an important mechanistic link between transcription and DNA repair. In addition, they provide a model of the mechanism of the displacement of XPC/Rad4 by XPG/Rad2 at the damaged site. This knowledge helps to better understand the mechanisms of genomic stability and can lead to novel cancer therapies.
|
Page generated in 0.021 seconds