• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional analysis of the Rad51d (E233G) breast cancer associated polymorphism and a pharmacogenetic evaluation of RAD51D status

Nadkarni, Aditi A. January 2008 (has links)
Dissertation (Ph.D.)--University of Toledo, 2008. / "In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences." Title from title page of PDF document. Bibliography: pages 73-77, 93-95, 109-111, 145-172.
2

Recombinational Repair of a Chromosomal DNA Double Strand Break: A Dissertation

Sinha, Manisha 16 March 2009 (has links)
Repairing a chromosomal DNA double strand break is essential for survival and maintenance of genomic integrity of a eukaryotic organism. The eukaryotic cell has therefore evolved intricate mechanisms to counteract all sorts of genomic insults in the context of chromatin structure. Modulating chromatin structure has been crucial and integral in regulating a number of conserved repair processes along with other fundamental genomic processes like replication and transcription. The work in this dissertation has focused on understanding the role of chromatin remodeling enzymes in the repair of a chromosomal DNA double strand break by homologous recombination. This has been approached by recapitulating the biochemical formation of recombination intermediates on chromatin in vitro. In this study, we have demonstrated that the mere packaging of DNA into nucleosomal structure does not present a barrier for successful capture of homologous DNA sequences, a central step of the biochemical pathway of recombinational repair. It is only the assembly of heterochromatin-like more complex nucleo-protein structure that presents additional constraints to this key step. And, this additional constraint can be overcome by the activities of ATP-dependent chromatin remodeling enzymes. These findings have great implications for our perception of the mechanism of the recombinational repair process of a chromosomal DNA double strand break within the eukaryotic genome.
3

Support of Mitochondrial DNA Replication by Human Rad51: A Dissertation

Sage, Jay M. 13 December 2011 (has links)
The function of homologous DNA recombination in human mitochondria has been a topic of ongoing debate for many years, with implications for fields ranging from DNA repair and mitochondrial disease to population genetics. While genetic and biochemical evidence supports the presence of a mitochondrial recombination activity, the purpose for this activity and the proteins involved have remained elusive. The work presented in this thesis was designed to evaluate the mitochondrial localization of the major recombinase protein in human cells, Rad51, as well as determine what function it plays in the maintenance of mitochondrial DNA (mtDNA) copy number that is critical for production of chemical energy through aerobic respiration. The combination of subcellular fractionation with immunoblotting and immunoprecipitation approaches used in this study clearly demonstrates that Rad51 is a bona fide mitochondrial protein that localizes to the matrix compartment following oxidative stress, where it physically interacts with mtDNA. Rad51 was found to be critical for mtDNA copy number maintenance under stress conditions. This requirement for Rad51 was found to be completely dependent on ongoing mtDNA replication, as treatment with the DNA polymerase gamma (Pol ϒ) inhibitor, ddC, suppresses both recruitment of Rad51 to the mitochondria following the addition of stress, as well as the mtDNA degradation observed when Rad51 has been depleted from the cell. The data presented here support a model in which oxidative stress induces a three-part response: (1) The recruitment of repair factors including Rad51 to the mitochondrial matrix, (2) the activation of mtDNA degradation systems to eliminate extensively or persistently damaged mtDNA, and (3) the increase in mtDNA replication in order to maintain copy number. The stress-induced decrease in mtDNA copy number observed when Rad51 is depleted is likely the result of failure to stabilize or repair replication forks that encounter blocking lesions resulting in further damaged to the mtDNA and its eventual degradation.
4

Imatinib radiosensitizes bladder cancer by targeting homologous recombination

Qiao, B., Kerr, M., Groselj, B., Teo, M.T., Knowles, M.A., Bristow, R.G., Phillips, Roger M., Kiltie, A.E. January 2013 (has links)
No / Radiotherapy is a major treatment modality used to treat muscle-invasive bladder cancer, with patient outcomes similar to surgery. However, radioresistance is a significant factor in treatment failure. Cell-free extracts of muscle-invasive bladder tumors are defective in nonhomologous end-joining (NHEJ), and this phenotype may be used clinically by combining radiotherapy with a radiosensitizing drug that targets homologous recombination, thereby sparing normal tissues with intact NHEJ. The response of the homologous recombination protein RAD51 to radiation is inhibited by the small-molecule tyrosine kinase inhibitor imatinib. Stable RT112 bladder cancer Ku knockdown (Ku80KD) cells were generated using short hairpin RNA technology to mimic the invasive tumor phenotype and also RAD51 knockdown (RAD51KD) cells to show imatinib's pathway selectivity. Ku80KD, RAD51KD, nonsilencing vector control, and parental RT112 cells were treated with radiation in combination with either imatinib or lapatinib, which inhibits NHEJ and cell survival assessed by clonogenic assay. Drug doses were chosen at approximately IC40 and IC10 (nontoxic) levels. Imatinib radiosensitized Ku80KD cells to a greater extent than RAD51KD or RT112 cells. In contrast, lapatinib radiosensitized RAD51KD and RT112 cells but not Ku80KD cells. Taken together, our findings suggest a new application for imatinib in concurrent use with radiotherapy to treat muscle-invasive bladder cancer. Cancer Res; 73(5); 1611-20. (c)2012 AACR.

Page generated in 0.0603 seconds