• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 11
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 50
  • 17
  • 16
  • 11
  • 11
  • 11
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Analysis of Ultra-Wideband Pulse Scattered from Planar Objects

Li, Lin Unknown Date
No description available.
32

Modélisation du canal en ondes millimétriques pour des applications radar automobile / Millimeter wave channel modeling for automotive radar applications

Bel kamel, Emna 13 October 2017 (has links)
L’amélioration de la sécurité routière ainsi que le développement des systèmes de transports intelligents sont des enjeux d’avenir dans le secteur automobile avec un essor considérable du véhicule semi autonome et autonome. Les systèmes de sécurité active qui équipent de plus en plus les véhicules commercialisés utilisent des capteurs radar (longue et courte portée) fonctionnant dans les bandes 24 GHz ou 77 GHz. L’étude et la mise au point de tels capteurs peuvent être facilitées via l’utilisation d’une plate-forme de simulation générique permettant de simuler un système radar couplé à son environnement selon des scénarios types prédéfinis. Il est alors nécessaire de disposer d’une représentation fiable et réaliste de l’environnement et des objets présents.Cette thèse aborde la caractérisation et la modélisation du canal de propagation et plus largement de l’environnement radioélectrique en ondes millimétriques pour des applications radar, en termes de phénomènes de propagation (trajets multiples, réflexion, diffraction …) et de cibles électriquement larges. Une combinaison de méthodes asymptotiques a été mise en œuvre afin de permettre l'analyse de problèmes électriquement larges en bande W, tout en réduisant les exigences en temps de calcul et en capacité de mémoire. La précision du simulateur a été évaluée à l’aide d’une campagne de mesures de SER de cibles canoniques et complexes de petite taille (inférieure 6cm) dans une chambre anéchoïque. Le banc de mesure mis en œuvre a permis également de valider une procédure expérimentale de détermination de la signature radar. En effet, la procédure expérimentale a été généralisée à la mesure de la signature radar d’objets de taille réelle, dans un milieu « indoor ». Les mesures effectuées ont montré une bonne adéquation avec les résultats présentés dans la littérature. En outre, ces données expérimentales permettent d’extraire une description de la cible par des points brillants qui modélisent les phénomènes de diffusion et de réflexion spéculaire. La réponse à haute fréquence d’une cible peut être approchée par la somme de réponses de ses points brillants. On propose ainsi de simplifier les signatures mesurées pour maximiser l'efficacité de calcul. Comparé aux modèles géométriques détaillés d’une cible complexe, le modèle de points brillants conduit à une meilleure efficacité des simulations de propagation basées sur des rayons dans des scénarios routiers. Le modèle tient également compte de l’anisotropie des diffuseurs (dans le plan azimutal) en modélisant leurs amplitudes par des gaussiennes. / Improving road safety as well as the development of intelligent transport systems are issues of the future in the automotive sector with a considerable rise of the semi-autonomous and autonomous vehicle. The active safety systems that increasingly equip commercial vehicles use radar sensors (long and short range) operating in the 24 GHz or 77GHz bands. The study and development of such sensors can be facilitated through the use of a generic simulation platform to simulate a radar system coupled to its environment according to predefined standard scenarios. It is then necessary to have a reliable and realistic representation of the environment as well as targets. This thesis deals with the characterization and modelling of the propagation channel for radar applications, in terms of propagation phenomena (multipath, reflection, diffraction …) and electrically large targets. A combination of asymptotic methods was developed for the analysis of electrically large problems in W band, while reducing the requirements in CPU time and memory. The accuracy of the simulator was evaluated with radar cross section measurement of canonical and complex small targets (not exceeding 6 cm) in an anechoic chamber. The developed bench measurement also made it possible to validate an experimental procedure for determining the radar signature. Indeed, the experimental characterization was generalized to characterize various automotive related targets in an “indoor” environment. Measurement results matched well with the results presented in the literature. Moreover, the experimental data allows the extraction of a simple target description in terms of scattering points which model the diffusion and specular reflection phenomena. The high frequency response of a target can be approached by the sum of the responses of its scattering centres. It is thus proposed to simplify the measured signatures in order to increase the computation efficiency. Compared to detailed geometrical representation of a complex target, scattering centre model leads to better efficiency of ray-based propagation simulations of road scenarios. The model also takes into account the scattering centre anisotropy (in the azimuth plan) by modelling their amplitudes by Gaussian ones.
33

Caractérisation de SER Basse Fréquence et Modes Caractéristiques / Low Frequency RCS Measurement and Characteristic Modes

Cognault, Aurore 28 April 2009 (has links)
La SER, est la grandeur qui permet de quantifier le pouvoir réflecteur d'un objet, ou a contrario sa discrétion électromagnétique. Maîtriser la SER, voire la diminuer, est un enjeu majeur dans le domaine aéronautique de défense. C'est en particulier un gage de survivabilité pour les aéronefs. Historiquement, les fréquences RADAR d'intérêt étaient celles de la bande Super Haute Fréquence, ce qui équivaut à des longueurs d'onde de 2 à 30 centimètres. Des outils d'analyse adaptés ainsi que des moyens de mesure ou de caractérisation de la SER ont été mis au point. Ils se sont révélés extrêmement performants. On peut citer par exemple la chambre anéchoïque CAMELIA du CESTA. En revanche, dans le domaine des basses fréquences, il est plus délicat de réaliser des mesures précises. Pour des longueurs d'onde de 1 à 5 mètres, l'épaisseur des absorbants est souvent trop faible ; même les dimensions des chambres anéchoïques ne représentent que quelques longueurs d'onde. Notre objectif, lors de cette thèse, était de proposer et d'étudier des algorithmes nouveaux permettant d'améliorer ou de faciliter la caractérisation de la SER en basse fréquence. La notion de courants caractéristiques, introduite par Harrington et Mautz dans les années 70, puis reprise par Y. Morel dans le cas d'objets parfaitement conducteurs, permet la décomposition d'un courant induit quelconque en courants élémentaires. Les modes caractéristiques sont obtenus en faisant rayonner ces courants caractéristiques. Cependant, il n'existe pas d'outil de détermination des modes lorsque l'objet n'est plus parfaitement conducteur. Nous nous sommes donc dotés d'un tel outil, que nous avons construit et validé. Pour cela, nous avons repris dans un premier temps le cadre mathématique qui permet de définir l'opérateur de Perturbation, ses propriétés mathématiques et sa décomposition en éléments propres. Nous avons montré que cet opérateur discrétisé conserve ses propriétés mathématiques. Nous avons ensuite validé notre méthode de calcul direct des modes caractéristiques, issus de la diagonalisation de l'opérateur de perturbation discrétisé. Dans un deuxième temps, nous avons mené des études phénoménologiques. Nous avons tout d'abord observé l'évolution des éléments propres de l'opérateur de perturbation en fonction de l'impédance, et nous nous sommes intéressés au cas particulier de l'impédance égale à 1. Nous avons ensuite observé les phénomènes lorsque la fréquence évolue. En nous concentrant sur les valeurs propres, nous avons pu différencier deux types de modes. Enfin, nous avons détaillé quelques exemples d'applications concrètes de cette méthode de détermination des modes, qui permettent d'améliorer ou de faciliter la caractérisation de la SER en basse fréquence. L'outil ORFE (Outil de Reformulation, Filtrage et Extrapolation de données) permet d'atténuer les termes d'erreurs inhérents à toute caractérisation, et d'extrapoler des données existantes à des cas de figure non acquis ou non accessibles en mesure. Il a donné lieu à un brevet. Un outil d'interpolation de SER en basse fréquence a aussi été construit. Il permet d'obtenir de meilleurs résultats que l'interpolation linéaire de la SER. Nous avons aussi mis en place une méthode d'imagerie basse fréquence. Elle permet de localiser d'éventuels défauts de métallisation de l'objet considéré, en utilisant la base des courants caractéristiques. Enfin, nous avons présenté une méthodologie de caractérisation de SER qui intègre les limites des moyens de mesure. Nous avons mis en évidence que cette caractérisation donne une information absolue sur la SER de l'objet, dans un périmètre de validité. Un brevet a été déposé sur cette méthode. / This work focuses on RADAR Cross Section (RCS) measurements in the low frequency domain. Radar Cross Section (RCS) is a description of how an object reflects an incident electromagnetic wave. Quantitatively, RCS is the effective surface area that intercepts the incident wave and isotropically scatters the energy. Controlling RCS is a real challenge for aeronautic defence. In the past, RCS interest frequencies used to be in the Super High Frequency domain (wavelengths between 2 and 30 centimetres). RCS is mastered in this frequency domain, due to the use of bright point model and large anechoic chamber. On the other hand, RCS measurements cannot be entirely and accurately obtained in the low frequency domain because of experimental constraints. Indeed, absorbing coatings are too thin (compared to the wavelength) to be efficient, and the anechoic chamber is too small. The aim of the thesis was to suggest new algorithms that improve RCS low frequency characterization. The Characteristic Currents were first introduced by Harrington and Mautz in the early 70's and then studied by Y. Morel in his PhD thesis. This work highlights that the current of any Perfectly Electrically Conducting (PEC) object can be split into elementary currents. The characteristic modes are obtained by radiating the characteristic currents. However, there is no tool to determine the characteristic modes for non PEC object. In this thesis, such a tool has been built and validated. We _rst needed to set the mathematical framework. We defined the Perturbation Operator, its eigenvalues decomposition and its mathematical properties. We proved that the discrete Perturbation Operator keeps its properties. This method of modes determination has then been validated. We then presented two phenomenology studies. The first one deals with the impact of impedance on the eigenvalues and eigenvectors of the perturbation operator. We get particularly interested in the case of the impedance equal to 1. The second focuses on the impact of frequency, which led us to distinguish two kinds of modes. When finally listed some concrete applications of our method of modes determination, that led to improve RCS characterizations. The first tool named ORFE (it stands for Reformulation, Filtering and Extrapolation Tool), consists in reducing errors that are inherent in RCS measurements, and extrapolating data out of measurement range. This tool has been patented. A RCS frequency interpolation algorithm has also been built. We then implemented a low frequency imagery method. It consists in localizing some perturbation of metallization, by using the characteristic current basis. We finally presented a way to characterize RCS while taking low frequency experimental constraints into account. We show that this characterization gives information of the RCS of the object in a validity perimeter. This method has been patented too.
34

Radar Characteristics Study for the Development of Surrogate Roadside Objects

Jun Lin (5931089) 16 January 2020 (has links)
<div>Driving safety is a very important topic in vehicle development. One of the biggest threat of driving safety is road departure. Many vehicle active safety technologies have been developed to warn and mitigate road departure in recent years. In order to evaluate the performance of road departure warning and mitigation technologies, the standard testing environment need to be developed. The testing environment shall be standardized to provide consistent and repeatable features in various locations worldwide and in various seasons. The testing environment should also be safe to the vehicle under test in case the safety features do not function well. Therefore, soft, durable and reusable surrogates of roadside objects need to be used. Meanwhile, all surrogates should have the same representative characteristics of real roadside objects to different automotive sensors (e.g. radar, LIDAR and camera). This thesis describes the study on identifying the radar characteristics of common roadside objects, metal guardrail, grass, and concrete divider, and the development of the required radar characteristics of surrogate objects. The whole process is divided into two steps. The first step is to find the proper methods to measure the radar properties of those three roadside objects. The measurement result of each roadside object will be used as the requirement for making its surrogate. The second step is to create the material for developing the surrogate of each roadside object. In the experimental results demonstrate that all three surrogates satisfy their radar characteristics requirements.</div>
35

Исследование дифракции плоской электромагнитной волны на теле вращения : магистерская диссертация / Study of electromagnetic plane wave diffraction from a solid of revolution

Векшин, П. А., Vekshin, P. A. January 2015 (has links)
Необходимость в написании программы для расчета рассеянного поля телом вращения возникла в связи с неоднозначностью решения рассеянного поля таких объектов средствами электродинамического моделирования FEKO и Ansoft HFSS. В частности, в HFSS при повороте объекта (конуса) и соответствующем изменении характеристик падающей волны (направления распространения и поляризации) количество сегментов могло меняться более, чем на порядок. Отметим, что в качестве подхода к решению использовался метод физической оптики. Трудности расчета в FEKO вызваны по большей части ресурсами компьютера, а также сложностью последующей трактовки и математической обработки полученных результатов. Программа, описываемая в работе, позволит подойти к решению рассеянного на теле вращения поля более индивидуально и избежать таких неоднозначностей, что могут встречаться при расчетах в пакетах электродинамического моделирования. По результатам рассмотрения ряда задач сделан выбор в пользу метода физической оптики и его численной реализации на базе алгоритмов MATLAB. / The solution of diffraction from perfectly conducting convex solids of revolution is considered. The main aim is obtainment of an optimal approach for diffraction solution from large-scale solids. The implementation of a numerical solution of diffraction with physical optics method using MATLAB is considered. The realized program allows description of the solid of revolution with the analytic form equation of the curve. The possibility of curve description with a few functions defined on disjoint intervals is taken into consideration. The surface meshing with the required value is assured. The measure method of scattering characteristics is touched upon. The experimental results of the solid with three equations of curve are presented. The results of MATLAB modeling are compared with the experimental ones. The upgradability of mathematical modeling algorithms is proposed.
36

Caractérisation d'antennes par la méthode du développement en singularités appliquée au coefficient de rétrodiffusion / Antenna characterization using the singularity expansion method applied on the backscattering coefficient

Sarrazin, François 22 November 2013 (has links)
Ce manuscrit est consacré à l’étude de la méthode du développement en singularités (SEM) appliquée aux antennes. Dans la première partie de ce travail, trois méthodes d’extraction des pôles de résonance sont présentées et comparées : les méthodes de Prony et Matrix Pencil dans le domaine temporel et la méthode de Cauchy dans le domaine fréquentiel. Une procédure est établie pour optimiser l’extraction avec chaque méthode et une étude de robustesse montre que la méthode Matrix Pencil permet d’obtenir plus de pôles et avec une meilleure précision que les deux autres méthodes en présence de bruit. Dans un second temps, la méthode Matrix Pencil est appliquée sur des réponses d’antennes, obtenues en rayonnement et en Surface Equivalente Radar (SER), et les pôles de résonance extraits sont identiques pour les deux approches. Cette étude valide donc la possibilité d’extraire les pôles de résonance d’une antenne directement à partir de sa SER. La variation de la position des pôles de résonance en fonction des dimensions et de la charge de deux antennes est ensuite étudiée et met en évidence le lien entre l’impédance d’entrée de l’antenne et ses pôles de résonance. Enfin, les mesures de la SER de trois antennes valident expérimentalement l’extraction des pôles de résonance à partir de la SER d’une antenne. Ce travail pose donc les bases de la caractérisation d’antennes à l’aide de la SEM appliquée à la SER de l’antenne. / This manuscript deals with the Singularity Expansion Method (SEM) applied to antenna characterization. In the first part of this work, three resonant poles extraction methods are presented and compared: the Prony and Matrix Pencil methods in the transient domain and the Cauchy method in the frequency domain. A procedure is defined to optimize the extraction with each method and a robustness study shows that Matrix Pencil method allows obtaining more physical poles with a better accuracy than the two other methods in presence of noise. In a second part, the Matrix Pencil algorithm is applied on radiated and backscattered antenna responses. Extracted resonant poles from both responses are exactly the same. This study validates the possibility to extract poles directly from its backscattered response. The position of resonant poles is analyzed with respect to antenna’s dimension and its load for two different cases. This emphasizes the link between antenna poles and antenna input impedance. Finally, RCS measurements of three antennas validate antenna poles extraction directly from its RCS. This work lays the foundations of antenna characterization using the SEM applied to RCS measurements.
37

Computation Of Radar Cross Sections Of Complex Targets By Physical Optics With Modified Surface Normals

Durgun, Ahmet Cemal 01 August 2008 (has links) (PDF)
In this study, a computer code is developed in MATLAB&reg / to compute the Radar Cross Section (RCS) of arbitrary shaped complex targets by using Physical Optics (PO) and Modified PO. To increase the computational efficiency of the code, a novel fast integration procedure for oscillatory integrals, called Levin&rsquo / s integration, is applied to PO integrals. In order to improve the performance of PO near grazing angles and to model diffraction effects, a method called PO with Modified Surface Normal Vectors is implemented. In this method, new surface normals are defined to model the diffraction mechanism. Secondary scattering mechanisms like multiple scattering and shadowing algorithms are also included into the code to obtain a complete RCS prediction tool. For this purpose, an iterative version of PO is used to account for multiple scattering effects. Indeed, accounting for multiple scattering effects automatically solves the shadowing problem with a minor modification. Therefore, a special code for shadowing problem is not developed. In addition to frequency domain solutions of scattering problems, a waveform analysis of scattered fields in time domain is also comprised into this thesis. Instead of direct time domain methods like Time Domain Physical Optics, a Fourier domain approach is preferred to obtain the time domain expressions of the scattered fields. Frequency and time domain solutions are obtained for some simple shapes and for a complex tank model for differently polarized incident fields. Furthermore, a statistical analysis for the scattered field from the tank model is conducted.
38

Automatic target recognition using passive bistatic radar signals.

Pisane, Jonathan 04 April 2013 (has links) (PDF)
We present the design, development, and test of three novel, distinct automatic target recognition (ATR) systems for the recognition of airplanes and, more specifically, non-cooperative airplanes, i.e. airplanes that do not provide information when interrogated, in the framework of passive bistatic radar systems. Passive bistatic radar systems use one or more illuminators of opportunity (already present in the field), with frequencies up to 1 GHz for the transmitter part of the systems considered here, and one or more receivers, deployed by the persons managing the system, and not co-located with the transmitters. The sole source of information are the signal scattered on the airplane and the direct-path signal that are collected by the receiver, some basic knowledge about the transmitter, and the geometrical bistatic radar configuration. The three distinct ATR systems that we built respectively use the radar images, the bistatic complex radar cross-section (BS-RCS), and the bistatic radar cross-section (BS-RCS) of the targets. We use data acquired either on scale models of airplanes placed in an anechoic, electromagnetic chamber or on real-size airplanes using a bistatic testbed consisting of a VOR transmitter and a software-defined radio (SDR) receiver, located near Orly airport, France. We describe the radar phenomenology pertinent for the problem at hand, as well as the mathematical underpinnings of the derivation of the bistatic RCS values and of the construction of the radar images.For the classification of the observed targets into pre-defined classes, we use either extremely randomized trees or subspace methods. A key feature of our approach is that we break the recognition problem into a set of sub-problems by decomposing the parameter space, which consists of the frequency, the polarization, the aspect angle, and the bistatic angle, into regions. We build one recognizer for each region. We first validate the extra-trees method on the radar images of the MSTAR dataset, featuring ground vehicles. We then test the method on the images of the airplanes constructed from data acquired in the anechoic chamber, achieving a probability of correct recognition up to 0.99.We test the subspace methods on the BS-CRCS and on the BS-RCS of the airplanes extracted from the data acquired in the anechoic chamber, achieving a probability of correct recognition up to 0.98, with variations according to the frequency band, the polarization, the sector of aspect angle, the sector of bistatic angle, and the number of (Tx,Rx) pairs used. The ATR system deployed in the field gives a probability of correct recognition of $0.82$, with variations according to the sector of aspect angle and the sector of bistatic angle.
39

Analogie microonde appliquée à l'étude de la diffraction par des arbres, par des particules atmosphériques et des micro-organismes / Application of the microwave analogy to study the scattering properties of trees, atmospheric particles and microorganisms

Saleh, Hassan 09 November 2017 (has links)
Cette thèse élargie le champ des applications de l’analogie microonde en adaptant les techniques de fabrication permettant de contrôler les analogues et en développant un outil versatile et précis pour réaliser les mesures. L’analogie microonde consiste à transposer à l’échelle microonde les objets dont nous souhaitons étudier la diffraction en créant un analogue respectant le même rapport dimension sur longueur d’onde, et les mêmes propriétés morphologiques électromagnétiques. Une attention particulière a été portée aux objets faiblement diffractant ayant des niveaux SER aussi faibles que -60 dBm2. A la suite de la caractérisation des réflexions parasites et de celle du bruit aléatoire perturbant les mesures, une nouvelle technique d’optimisation du paramétrage des appareils de mesure a été proposée. Elle comporte notamment un réglage des puissances de source en fonction des angles de bistatisme et un filtrage temporel, par switch, qui a été mis en place et paramétré pour filtrer les signaux parasites mesurés. Les bénéfices de ces diverses optimisations des paramètres de mesures ont été démontrés et ils ont permis de mesurer précisément des niveaux de SER très faibles. De plus, la mise en œuvre de la fabrication additive a permis de réaliser des analogues de géométrie maîtrisée avec des permittivités relatives locales à la carte ayant des parties réelles dans la gamme de 1 à 3 ; la permittivité étant ajustée par contrôle de la porosité. Les trois principales études présentées concernent : des sphéroïdes de faible permittivité, analogues de micro-algues, des agrégats de suies de forme complexes, et des scènes forestières composées d’analogues d’arbres et de véhicules. / This thesis widens the application of the microwave analogy by adopting the appropriate techniques to create objects of controlled shapes and electromagnetic properties using novel manufacturing technologies, as well as by developing a versatile setup providing accurate measurements. Microwave analogy is a useful approach to investigate a scattering problem when the targets have nanometric or metric sizes. The experiment is scaled to the microwave range and the target is mimicked by a centimeter-sized analog, while maintaining the same initial wavelength over target’s dimension ratio and conserving the same geometric and electromagnetic properties. A special attention is given to low scattering targets with RCS levels down to -60 dBm2. The random noise of the measurement setup was characterized and a novel optimization technique was proposed which consists of an angular decomposition of the bistatic region with different power profiles. The undesired reflections within the anechoic chamber were identified and a Hardgating system was installed, allowing to filter out the stray signals. In addition, additive manufacturing technologies were involved in the fabrication of analogs and a novel technique was proposed to obtain targets with “on-demand” shapes and local values of their complex permittivity. We can manufacture low scattering analogs of the real part of permittivity for any value between 1 and 3 by creating well controlled porous structures. The three main targets are studied: low permittivity spheroids, analogs of microalgae, soot aggregates analogs with complex shape, and scaled forest scene composed of tree analogs with some metal vehicle analogs.
40

Study of RCS from Aerodynamic Flow using Parallel Volume-Surface Integral Equation

Padhy, Venkat Prasad January 2016 (has links) (PDF)
Estimation of the Radar Cross Section of large inhomogeneous scattering objects such as composite aircrafts, ships and biological bodies at high frequencies has posed large computational challenge. The detection of scattering from wake vortex leading to detection and possible identification of low observable aircrafts also demand the development of computationally efficient and rigorous numerical techniques. Amongst the various methods deployed in Computational Electromagnetics, the Method of Moments predicts the electromagnetic characteristics accurately. Method of Moments is a rigorous method, combined with an array of modeling techniques such as triangular patch, cubical cell and tetrahedral modeling. Method of Moments has become an accurate technique for solving electromagnetic problems from complex shaped homogeneous and inhomogeneous objects. One of the drawbacks of Method of Moments is the fact that it results into a dense matrix, the inversion of which is a computationally complex both in terms of physical memory and compute power. This has been the prime reason for the Method of Moments hitherto remaining as a low frequency method. With recent advances in supercomputing, it is possible to extend the range of Method of Moments for Radar Cross Section computation of aircraft like structures and radiation characteristic of antennas mounted on complex shaped bodies at realistic frequencies of practical interest. This thesis is a contribution in this direction. The main focus of this thesis is development of parallel Method of Moments solvers, applied to solve real world electromagnetic wave scattering and radiation problems from inhomogeneous objects. While the methods developed in this thesis are applicable to a variety of problems in Computational Electromagnetics as shown by illustrative examples, in specific, it has been applied to compute the Radar Cross Section enhancement due to acoustic disturbances and flow inhomogeneities from the wake vortex of an aircraft, thus exploring the possibility of detecting stealth aircraft. Illustrative examples also include the analysis of antenna mounted on an aircraft. In this thesis, first the RWG basis functions have been used in Method of Moments procedure, for solving scattering problems from complex conducting structures such as aircraft and antenna(s) mounted on airborne vehicles, of electrically large size of about 45 and 0.76 million unknowns. Next, the solver using SWG basis functions with tetrahedral and pulse basis functions with cubical modeling have been developed to solve scattering from 3D inhomogeneous bodies. The developed codes are validated by computing the Radar Cross Section of spherical homogeneous and inhomogeneous layered scatterers, lossy dielectric cylinder with region wise inhomogeneity and high contrast dielectric objects. Aerodynamic flow solver ANSYS FLUENT, based on Finite Volume Method is used to solve inviscid compressible flow problem around the aircraft. The gradients of pressure/density are converted to dielectric constant variation in the wake region by using empirical relation and interpolation techniques. Then the Radar Cross Section is computed from the flow inhomogeneities in the vicinity of a model aircraft and beyond (wake zone) using the developed parallel Volume Surface Integral Equation using Method of Moments and investigated more rigorously. Radar Cross Section enhancement is demonstrated in the presence of the flow inhomogeneities and detectability is discussed. The Bragg scattering that occurs when electromagnetic and acoustic waves interact is also discussed and the results are interpreted in this light. The possibility of using the scattering from wake vortex to detect low visible aircraft is discussed. This thesis also explores the possibility of observing the Bragg scattering phenomenon from the acoustic disturbances, caused by the wake vortex. The latter sets the direction for use of radars for target identification and beyond target detection. The codes are parallelized using the ScaLAPACK and BiCG iterative method on shared and distributed memory machines, and tested on variety of High Performance Computing platforms such as Blue Gene/L (22.4TF), Tyrone cluster, CSIR-4PI HP Proliant 3000 BL460c (360TF) and CRAY XC40 machines. The parallelization speedup and efficiency of all the codes has also been shown.

Page generated in 0.0918 seconds