• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Radial and axial mixing of particles in a dry batch ball mill

Chibwana, Clement 31 October 2006 (has links)
Student Number : 0401422G - MSc dissertation - School of Chemical and Metallurgical Engineering - Faculty of Engineering / Mixing is an important operation that is carried out in food, paint, pharmaceutical and mineral processing industries. Ball mills are one of the many mixing vessels used in a mineral processing industry. During grinding, the mill’s efficiency depends on particle presentation to the grinding media and the adequate utilisation of the applied forces to effect breakage of particles (ore). Utilisation of applied forces is affected by how well particles and grinding media are mixed. The study of charge mixing is important as it affects the mill’s production rate and accelerates media wear, thus relevant to the cost reduction for the milling process. The kinetics of mixing in a batch ball mill were quantified both radially and axially. Experiments were conducted in a laboratory batch ball mill and two experimental programs were used to study the mixing process. Radial mixing of particles was observed to increase with increasing mill speed. For a mill used in this study, mixing of particles at Nc=90% took almost half the total time taken at Nc=75% to reach completion. A simplified mathematical model is presented, which can be used to predict the radial mixing of particles in a ball mill. Axial mixing of particles was observed to be affected by both the charge system used and segregation of particles from the grinding media. It took a minute for mixing to reach 80% completion for a mill used in the experiments. Mixing of particles was faster in a steel balls/plastic powders charge system than in a glass beads/quartz charge system. The distribution of particles in a batch mill was observed to vary along the axis of the mill. The centre of the mill was overfilled with particles, U>1, while the regions near the mill ends were underfilled, U<1. The opposite was true for the grinding media. The data reported was based on measurements of particle distribution along the mill as affected by different charge systems. The work presented in this thesis is a contribution to the continuing research on mixing of particles in ball mills.
2

Evaluation of the enhanced thermal fluid conductivity for gas flow through structured packed pebble beds / T.L. Kgame

Kgame, Tumelo Lazarus January 2010 (has links)
The High Pressure Test Unit (HPTU) forms part of the Pebble Bed Modular Reactor (PBMR) Heat Transfer Test Facility (HTTF). One of the test sections that forms part of the HPTU is the Braiding Effect Test Section (BETS). This test section allows for the evaluation of the so–called ‘braiding effect’ that occurs in fluid flow through a packed pebble bed. The braiding effect implies an apparent enhancement of the fluid thermal conductivity due to turbulent mixing that occurs as the flow criss–crosses between the pebbles. The level of enhancement of the fluid thermal conductivity is evaluated from the thermal dispersion effect. The so–called thermal dispersion quantity r K is equivalent to an effective Peclet number eff Pe based on the inverse of the effective thermal conductivity eff k . This thesis describes the experiments carried out on three different BETS test sections with pseudo–homogeneous porosities of 0.36, 0.39 and 0.45, respectively. It also provides the values derived for the enhanced fluid thermal conductivity for the range of Reynolds numbers between 1,000 and 40,000. The study includes the following: * Compilation of a literature study and theoretical background. * An uncertainty analysis to estimate the impact of instrument uncertainties on the accuracy of the empirical data. * The use of a Computational Fluid Dynamics (CFD) model to simulate the heat transfer through the BETS packed pebble bed.* Application of the CFD model combined with a numerical search technique to extract the effective fluid thermal conductivity values from the measured results. * The assessment of the results of the experiments by comparing it with the results of other investigations found in the open literature. The primary outputs of the study are the effective fluid thermal conductivity values derived from the measured data on the HPTU plant. The primary variables that were measured are the temperatures at radial positions at different axial depths inside the bed and the total mass flow rate through the test section. The maximum and minimum standard uncertainties for the measured data are 10.80% and 0.06% respectively. The overall effective thermal conductivities that were calculated at the minimum and maximum Reynolds numbers were in the order of 1.166 W/mK and 38.015 W/mK respectively. A sensitivity study was conducted on the experimental data and the CFD data. A maximum uncertainty of 5.92 % was found in the calculated effective thermal conductivities. The results show that relatively high values of thermal dispersion quantities or effective Peclet numbers are obtained for the pseudo–homogeneous packed beds when compared to randomly packed beds. Therefore, the effective thermal conductivity is low and it can be concluded that the radial mixing in the structured packing is low relative to the mixing obtained in randomly packed beds. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2011.
3

Evaluation of the enhanced thermal fluid conductivity for gas flow through structured packed pebble beds / T.L. Kgame

Kgame, Tumelo Lazarus January 2010 (has links)
The High Pressure Test Unit (HPTU) forms part of the Pebble Bed Modular Reactor (PBMR) Heat Transfer Test Facility (HTTF). One of the test sections that forms part of the HPTU is the Braiding Effect Test Section (BETS). This test section allows for the evaluation of the so–called ‘braiding effect’ that occurs in fluid flow through a packed pebble bed. The braiding effect implies an apparent enhancement of the fluid thermal conductivity due to turbulent mixing that occurs as the flow criss–crosses between the pebbles. The level of enhancement of the fluid thermal conductivity is evaluated from the thermal dispersion effect. The so–called thermal dispersion quantity r K is equivalent to an effective Peclet number eff Pe based on the inverse of the effective thermal conductivity eff k . This thesis describes the experiments carried out on three different BETS test sections with pseudo–homogeneous porosities of 0.36, 0.39 and 0.45, respectively. It also provides the values derived for the enhanced fluid thermal conductivity for the range of Reynolds numbers between 1,000 and 40,000. The study includes the following: * Compilation of a literature study and theoretical background. * An uncertainty analysis to estimate the impact of instrument uncertainties on the accuracy of the empirical data. * The use of a Computational Fluid Dynamics (CFD) model to simulate the heat transfer through the BETS packed pebble bed.* Application of the CFD model combined with a numerical search technique to extract the effective fluid thermal conductivity values from the measured results. * The assessment of the results of the experiments by comparing it with the results of other investigations found in the open literature. The primary outputs of the study are the effective fluid thermal conductivity values derived from the measured data on the HPTU plant. The primary variables that were measured are the temperatures at radial positions at different axial depths inside the bed and the total mass flow rate through the test section. The maximum and minimum standard uncertainties for the measured data are 10.80% and 0.06% respectively. The overall effective thermal conductivities that were calculated at the minimum and maximum Reynolds numbers were in the order of 1.166 W/mK and 38.015 W/mK respectively. A sensitivity study was conducted on the experimental data and the CFD data. A maximum uncertainty of 5.92 % was found in the calculated effective thermal conductivities. The results show that relatively high values of thermal dispersion quantities or effective Peclet numbers are obtained for the pseudo–homogeneous packed beds when compared to randomly packed beds. Therefore, the effective thermal conductivity is low and it can be concluded that the radial mixing in the structured packing is low relative to the mixing obtained in randomly packed beds. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2011.

Page generated in 0.0404 seconds