• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimised reduction of the radiated noise from the casing of a constant speed gearbox

Shen, Anne, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2008 (has links)
This thesis presents a comprehensive methodology for predicting and minimising the noise radiated from a constant speed gearbox assembly by means of attaching optimally placed stiffening ribs on the casing. The procedure involves building an FE model of the gearbox, which is updated using modal parameters extracted from a modal test. This is followed by synthesis of the required FRFs with respect to the forcing degrees-of-freedom. The forces, which are assumed to act only at the bearings are identified from these FRFs and the measured operational velocities of the casing. The identified forces are then used to excite the updated FE model to re-calculate the vibration velocities. A boundary element method is used to calculate the final radiated sound power to be compared with that measured. The same forces are used later to excite the modified gearbox casing to determine the improvement given by optimised modification. The optimisation study minimises the vibration energy of the casing in 10% bands around critical frequencies, in this case the first two harmonics of the gearmesh frequency. To allow for errors in the model, the excitation is by white noise, so as to produce wide stop bands, rather than minimising the response at particular frequencies. The vibration energy is weighted for radiation efficiency, A-weighting, and relative source strength in the bands. The final optimal stiffener layout is validated through a final vibration and acoustic calculation on the updated gearbox model using the forces identified in the earlier steps. The study of one particular gearbox concludes that i) the proposed hybrid optimisation scheme produces a theoretical effective noise reduction of 3 dBA for the total sound power. ii) Because the gearmesh harmonics were targeted, a further 5 dB improvement was effectively gained by eliminating the tonal penalty which otherwise applied. iii) From plate studies it was demonstrated that the stiffening ribs could be attached using epoxy cement (to avoid welding) and that the properties of the cemented joint could be determined by model updating after attaching one rib, so as to obtain a better prediction of the final optimised result.
2

Optimised reduction of the radiated noise from the casing of a constant speed gearbox

Shen, Anne, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2008 (has links)
This thesis presents a comprehensive methodology for predicting and minimising the noise radiated from a constant speed gearbox assembly by means of attaching optimally placed stiffening ribs on the casing. The procedure involves building an FE model of the gearbox, which is updated using modal parameters extracted from a modal test. This is followed by synthesis of the required FRFs with respect to the forcing degrees-of-freedom. The forces, which are assumed to act only at the bearings are identified from these FRFs and the measured operational velocities of the casing. The identified forces are then used to excite the updated FE model to re-calculate the vibration velocities. A boundary element method is used to calculate the final radiated sound power to be compared with that measured. The same forces are used later to excite the modified gearbox casing to determine the improvement given by optimised modification. The optimisation study minimises the vibration energy of the casing in 10% bands around critical frequencies, in this case the first two harmonics of the gearmesh frequency. To allow for errors in the model, the excitation is by white noise, so as to produce wide stop bands, rather than minimising the response at particular frequencies. The vibration energy is weighted for radiation efficiency, A-weighting, and relative source strength in the bands. The final optimal stiffener layout is validated through a final vibration and acoustic calculation on the updated gearbox model using the forces identified in the earlier steps. The study of one particular gearbox concludes that i) the proposed hybrid optimisation scheme produces a theoretical effective noise reduction of 3 dBA for the total sound power. ii) Because the gearmesh harmonics were targeted, a further 5 dB improvement was effectively gained by eliminating the tonal penalty which otherwise applied. iii) From plate studies it was demonstrated that the stiffening ribs could be attached using epoxy cement (to avoid welding) and that the properties of the cemented joint could be determined by model updating after attaching one rib, so as to obtain a better prediction of the final optimised result.
3

ANALYTICAL, NUMERICAL AND EXPERIMENTAL CALCULATION OF SOUND TRANSMISSION LOSS CHARACTERISTICS OF SINGLE WALLED MUFFLER SHELLS

GEORGE, JOHN K. 08 October 2007 (has links)
No description available.
4

Predicting cavitation-induced noise from marine propellers

McIntyre, Duncan 12 January 2021 (has links)
Noise pollution threatens marine ecosystems, where animals rely heavily on sound for navigation and communication. The largest source of underwater noise from human activity is shipping, and propeller-induced cavitation is the dominant source of noise from ships. Mitigation strategies require accurate methods for predicting cavitation-induced noise, which remains challenging. The present thesis explores prediction and modelling strategies for cavitation-induced noise from marine propellers, and provides insight into models that can be used both during propeller design and to generate intelligent vessel control strategies. I examined three distinct approaches to predicting cavitation-induced noise, each of which is discussed in one of the three main chapters of this thesis: a high-fidelity computational fluid dynamics scheme, a parametric mapping procedure, and the use of field measurements. Each of these three chapters presents different insight into the acoustic behaviour of cavitating marine propellers, as well both real and potential strategies for mitigating this critical environmental emission. A combined experimental and numerical study of noise from a cavitating propeller, focused on both the fundamental importance of experimental findings and the effectiveness of the numerical modelling strategy used, is detailed in the first main chapter of this thesis. The experimental results highlighted that loud cavitation noise is not necessarily associated with high-power or high-speed propeller operation, affirming the need for intelligent vessel operation strategies to mitigate underwater noise pollution. Comparison of the experimental measurements and simulations revealed that the simulation strategy resulted in an over-prediction of sound levels from cavitation. Analysis of the numerical results and experiments strongly suggested that the cavitation model implemented in the simulations, a model commonly used for marine propeller simulations, was responsible for the over-prediction of sound levels. Ships are powered primarily by combustion engines, for which it is possible to generate "maps" relating the emission of pollutants to the engine’s speed and torque; the second main chapter of this thesis presents the methodology I developed for generating similar "maps" relating the level of cavitation-induced noise to the speed and torque of a ship's propeller. A proof-of-concept of the method that used the model propeller from the first main chapter is presented. To generate the maps, I used a low-order simulation technique to predict the cavitation induced by the propeller at a range of different speed and torque combinations. A pair of semi-empirical models found in the literature were combined to provide the framework for predicting noise based on cavitation patterns. The proof-of-concept map shows a clear optimal operating regime for the propeller. The final main chapter of this thesis presents an analysis of field noise measurements of coastal ferries in commercial operation, the data for which were provided by an industrial partner. The key finding was the identification of cavitation regime changes with variation in vessel speed by their acoustic signatures. The results provide a basis for remotely determining which vessels produce less noise pollution when subject to speed limits, which have been implement in critical marine habitats, and which vessels produce less noise at a specific optimum speed. / Graduate
5

Target Classification And Recognition Using Underwater Acoustic Signals

Yagci, Tayfun 01 September 2005 (has links) (PDF)
Nowadays, fulfillment of the tactical operations in secrecy has great importance for especially subsurface and surface warfare platforms as a result of improvements in weapon technologies. Spreading out of the tactical operations to the larger areas has made discrimination of targets unavoidable. Due to enlargement of the weapon ranges and increasing subtle hostile threats as a result of improving technology, &ldquo / visual&rdquo / target detection methods left the stage to the computerized acoustic signature detection and evaluation methods. Despite this, the research projects have not sufficiently addressed in the field of acoustic signature evaluation. This thesis work mainly investigates classification and recognition techniques with TRN / LOFAR signals, which are emitted from surface and subsurface platforms and proposes possible adaptations of existing methods that may give better results if they are used with these signals. Also a detailed comparison has been made about the experimental results with underwater acoustic signals.
6

Snižování hluku počítačů obkládáním stěn zvukoizolačními materiály a regulací otáček ventilátorů / Noise control of computers-application of optimal sound isolation layers and fun rotation speed

Kunovský, Martin January 2011 (has links)
This thesis deals with the distribution of noise in the computer case and radiation into the neighborhood. Influence of geometrical shape and size of the computer case on radiated noise from the computer was investigated as well as effect of placement of the fan. Reducing noise by using sound absorbing material into computer case and result of the suitable position of the computer in the working environment were also tested. Simulation of the noise diffusion and effectivity of anti-noise equipment was executed in Ansys FEM program.
7

Characterization of Flow Induced Noise Received by an Array Placed at Stagnation Point of an Underwater Axisymmetric Body

Krishna Kumar, G V January 2017 (has links) (PDF)
Given the interest on underwater axisymmetric cylindrical bodies for the development of high-speed underwater weapons, characterization of the boundary layer flow-induced noise received by a Sound NAvigation and Ranging (SONAR) is very important to improve sonar detection ranges. The debate on generating mechanisms of the flow induced noise received at the stagnation point is still on as there is no experimental evidence conclusively suggesting whether it is a near-field or far-field phenomenon, thereby introducing an element of uncertainty in the prediction models. Further, the models developed thus far were based on low Reynolds numbers involving flows in water tunnels and buoyant vehicles. Therefore, the main focus of the thesis is to measure the flow induced noise using a sonar fitted at the most forward stagnation point of an underwater axisymmetric body as realistically as possible and predict the same theoretically for identifying a suitable flow noise model for future use by designers. In order to meet the stated goal, two exclusive experiments were conducted at sea using an underwater autonomous high-speed axisymmetric vehicle fitted with a planar hydrophone array (8X8) in its nose cone which measured the flow noise signature. Two different sets of existing models are used in characterizing the flow noise received by the array, while the first set comprises of models developed based on the Turbulent Boundary Layer induced noise and other is based on the transition zone radiated noise model. Through this study, it was found that the transition zone radiated noise model is in close agreement with the measured data.
8

Ανάπτυξη πειραματικής και υπολογιστικής μεθόδου για την μελέτη αεροθερμοδυναμικού πεδίου και του εκπεμπόμενου θορύβου και ρυπών από συρρέουσες και ανακυκλοφορούσες τυρβώδεις φλόγες προπανίου

Μαραζιώτη, Παναγιώτα 05 March 2009 (has links)
Η παρούσα διατριβή μελετά τις δυνατότητες υπολογισμού του πεδίου ροής δύο λειτουργικών παραμέτρων συμπεριλαμβανομένων του εκπεμπόμενου θορύβου και των εκπεμπόμενων ρύπων. Εξετάζεται η αλληλεπίδραση της καύσης με το ρευστο-θερμοδυναμικό πεδίο και τις χημικές αντιδράσεις. Περιγράφονται συνοπτικά οι διέπουσες εξισώσεις, οι μέθοδοι και τα μοντέλα της τυρβώδους καύσης και επισημαίνονται τα πλεονεκτήματα του μοντέλου των μεγάλων δινών (LES) το οποίο επιλέχθηκε εδώ. Αναπτύσσεται ένας εύχρηστος, από την ρευστοδυναμική υπολογιστική μεθοδολογία, πολυβηματικός μηχανισμός για δύο καύσιμα άμεσου ενδιαφέροντος το μεθάνιο και το προπάνιο. Προτείνεται, δηλαδή, ένα απλοποιημένο χημικό σχήμα για την οξείδωση των βασικών καυσίμων το οποίο περιέχει τον σχηματισμό του NΟx και της παραγωγής καπναιθάλης. Μετά από ανάλυση του ρόλου της καύσης στην ακουστική διακρίνονται οι δύο χαρακτηριστικοί τύποι: του θορύβου τυρβώδους καύσης (βόμβος – roar) και του θορύβου από τις ταλαντώσεις της καύσης (combustion oscillation). Παρουσιάζεται η κυματική εξίσωση και εισάγεται η έννοια του θερμο-ακουστικού όρου ο οποίος είναι συνάρτηση της απελευθερωμένης θερμότητας (q) στην φλόγα και εμφανίζεται ως όρος πηγής στην βασική εξίσωση. Στη συνέχεια η φλόγα εξετάζεται ως αυτόνομος πηγή αλλά και ως ενισχυτής θορύβου. Με την προσέγγιση της Προσομοίωσης των Μεγάλων Δινών (Large Eddy Simulation, LES) αναπτύχθηκε μια μεθοδολογία υπολογισμού του θορύβου που εκπέμπεται από το μέτωπο τυρβωδών φλογών διάχυσης. Στο πλαίσιο της προτεινομένης μεθοδολογίας το αποτέλεσμα ήταν η ανάπτυξη ενός τρισδιάστατου προγνωστικού υπολογιστικού κώδικα. Στην συνέχεια υπολογίζεται το αεροθερμοδυναμικό τυρβώδες πεδίο ροής μέσω τελειοποίησης κωδίκων του Εργαστηρίου Τεχνικής Θερμοδυναμικής, των κωδίκων που αναπτύχθηκαν στο πλαίσιο της παρούσης εργασίας αλλά και του εμπορικού κώδικα Fluent. Η μεθοδολογία, που αναπτύχθηκε με την παρούσα ερευνητική εργασία, πιστοποιήθηκε μέσω μιας σειράς πρωτότυπων μετρήσεων, του εκπεμπόμενου θορύβου στις συρρέουσες, εφαπτόμενες και ανυψωμένες και ανακυκλοφορούσες (χαμηλού και υψηλού λόγου καυσίμου/αέρα) φλόγες, σε πρωτότυπες πειραματικές διατάξεις του Εργαστηρίου. Συγκεκριμένα διαμορφώθηκε ένας καινοτόμος αεροδυναμικός φλογοσυγκρατητής πολλαπλών εγχύσεων που διατηρεί μια πλούσια γκάμα φλογών με ιδιαίτερα χαμηλό λόγο καυσίμου/αέρα. Επιτεύχθηκαν πειραματικές μετρήσεις, του ορμικού και θερμοκρασιακού πεδίου διαφόρων μορφών τυρβωδών φλογών, συντάχθηκαν σχετικά διαγράμματα και υπολογίσθηκαν οι αρχικές και οριακές συνθήκες των πειραμάτων. / In the present work the calculation of two parameters, the radiated noise and pollutants are studied. The interaction between combustion, the aerothermodynamical field and the chemical reactions is studied. The equations, the methods and the models of turbulent combustion are described here and the advantages of the large eddy simulation model (LES) which has been chosen for this case, are marked. A multi-step chemistry mechanism is developed for two fuels of great interest: methane and propane. A simple chemical scheme for the oxidation of basic fuels which includes the formation of NOx and soot is suggested in the present work. After analyzing the role of combustion in the acoustics two types of noise are distinguished the turbulent combustion noise and the noise from combustion oscillation. The wave equation is presented and the definition of thermo acoustic term which is a function of the heat release q in flame and it appears as a source term in the basic equation. The flame is examined as an autonomous source as well as a noise amplifier. With the approach of large eddy simulation (LES) a methodology for the noise calculation is developed which noise is from the turbulent diffusion flame front. In the place of the suggested methodology the result was the development of a 3-D computational code. The turbulent aerothermodynamical flow field is computed by codes has been developed in the laboratory of technical thermodynamic and by the commercial code (fluent). The methodology, which has been developed in the present work, has been certificated through a series of original measurements of the emitted noise in coaxial, tangential and lifted flames in original experimentallayouts.

Page generated in 0.057 seconds