• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 22
  • 16
  • 15
  • 15
  • 12
  • 11
  • 11
  • 11
  • 11
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Helium Filled Bubbles in Solids : Nucleation, Growth and Swelling / Heliumfyllda bubblor i fasta material : Kärnbildning, tillväxt och svällning

Runevall, Odd January 2012 (has links)
When nuclear fuel, fabricated for the purpose of transmuting spent fuel is irradiated, significant amounts of He is produced from alpha particles mainly emitted when 242Cm decays into 238Pu. From irradiation experiments it is known that the presence of He in the solids alters the swelling behaviour of the material. The thesis presents the theoretical background from which nucleation models of He bubbles can be formulated. Such models are presented for He in metals, and the case of He in Mo is studied as an example. MgO, which together with Mo is suggested as a matrix material in transmutation fuel is also studied and the stability of He containing bubbles in this material is discussed. By calculating parameters for a rate theory model derived from atomistic modelling, it is shown that He can stabilise vacancy clusters and cause cluster growth at temperatures and irradiation doses where nucleation and growth would not otherwise occur. At the initial stages of nucleation He can stabilise small bubbles while larger bubbles are unstable. This results in an incubation time of swelling, which implies that He does not always cause increased swelling, but can at certain irradiation conditions slow down the growth of large vacancy clusters and thereby delay swell\-ing beyond the time of the irradiation. When comparing the behaviour of bubble nucleation in Mo and MgO, it is found that He has a significant impact even at very low concentrations in Mo. In contrast, the concentration of He has to be considerably higher in MgO to affect the swelling behaviour. For an inert matrix fuel, designed for transmutation purposes, this implies that the Mo matrix will have a tendency to swell considerably at rather high temperatures due to He stabilised vacancy clusters. If operated at lower temperatures, the swelling could instead be reduced due to the incubation time. In a MgO matrix, the swelling behaviour will instead depend largely on the production rate of He. For a low production rate, the material will have a swelling behaviour similar to the one seen when He is not present in the material. A high production rate implies that He will remain in vacancy clusters, thereby stabilising the clusters and enhancing the growth and swelling.
12

Toward Understanding Dynamic Annealing Processes in Irradiated Ceramics

Myers, Michael 03 October 2013 (has links)
High energy particle irradiation inevitably generates defects in solids in the form of collision cascades. The ballistic formation and thermalization of cascades occur rapidly and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable post-irradiation disorder in ion-beam-processed semiconductors and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken. First, the effects of dynamic annealing are investigated in ZnO, a technologically relevant material that exhibits very high dynamic defect annealing at room temperature. Such high dynamic annealing leads to unusual defect accumulation in heavy ion bombarded ZnO. Through this work, the puzzling features that were observed more than a decade ago in ion-channeling spectra have finally been explained. We show that the presence of a polar surface substantially alters damage accumulation. Non-polar surface terminations of ZnO are shown to exhibit enhanced dynamic annealing compared to polar surface terminated ZnO. Additionally, we demonstrate one method to reduce radiation damage in polar surface terminated ZnO by means of a surface modification. These results advance our efforts in the long-sought-after goal of understanding complex radiation damage processes in ceramics. Second, a pulsed-ion-beam method is developed and demonstrated in the case of Si as a prototypical non-metallic target. Such a method is shown to be a novel experimental technique for direct extraction of dynamic annealing parameters. The relaxation times and effective diffusion lengths of mobile defects during the dynamic annealing process play a vital role in damage accumulation. We demonstrate that these parameters dominate the formation of stable post-irradiation disorder. In Si, a defect lifetime of ∼ 6 ms and a characteristic defect diffusion length of ∼ 30 nm are measured. These results should nucleate future pulsed-beam studies of dynamic defect interaction processes in technologically relevant materials. In particular, understanding length- and time-scales of defect interactions are essential for extending laboratory findings to nuclear material lifetimes and to the time-scales of geological storage of nuclear waste.
13

Simulation of 3D sensors

Lai, Ching-Hung January 2013 (has links)
The Large Hadron Collider (LHC) at CERN has the highest energy and luminosity in the world. Radiation hardness is then a critical requirement for the inner tracker design. The inner tracker is important for identifying heavy quarks using high spatial precision detectors. Silicon detectors are now the primary technology for this application. 3D silicon sensors use a novel technology with penetrating electrodes and have excellent radiation hardness by design. It overcomes the signal loss with a low operation voltage by reducing the collection length compared to the current planar technology used in the ATLAS pixel detector. The ATLAS insertable B-layer (IBL) is an upgrade to improve tracking resolution of the inner tracker and will be installed in 2013. It will be composed of 75% planar sensors and 25% 3D sensors in the large-η region. It is important to simulate the IBL tracking performance and to have a valid model for 3D sensors. This thesis investigated the experimental data for heavily irradiated planar strip sensors and 3D sensors to develop a device simulator, in which impact ionisation has to be included. The modelling has found that the radiation induced effective doping concentration has two linear regimes with a smaller growth rate at high fluences. This shows the possibility to operate silicon sensors with a higher irradiation level. The signal efficiency of each pixel is the basis to simulate the whole IBL response. A model and a code were developed to calculate the induced signal from electron-hole pairs generated by the traversing charge particles. This results in a 2D efficiency map used as an input of the 3D digitiser for the Geant4 simulation. This map was adopted by the IBL software team for the whole tracker simulation and has been validated by the test beam data.
14

Modeling of Effect of Alloying Elements on Radiation Damage in Metallic Alloys

Zhang, Yaxuan 26 May 2020 (has links)
Metallic alloys are important structural and cladding materials for current and future reactors. Understanding radiation-induced damage on metallic alloys is important for maintaining the safety of nuclear reactors. This dissertation mainly focuses on radiation-induced primary damage in iron-based metallic. Systematic molecular dynamics simulations were conducted to study the alloying element effects on the primary damage in Fe-based alloys, including defect production and dislocation loop transformations, and their connections with defect thermodynamics. First, effects of alloying elements on the primary damage in three Fe-based ferritic alloy systems were studied, with a particular focus on the production behaviors of solute interstitials. The production behaviors of solute interstitials include over-production or under-production, compared with their solute concentration in the Fe matrix. The three alloy systems are: (1) a Fe-Cr alloy system; (2) a Fe-Cu alloy system; and (3) an ideal but artificial Fe-Cr alloy system, which is used as a reference system. It is found that the number ratio of solute interstitials to the total interstitials is distinct in these alloys. The solute interstitials are over-produced in the Fe-Cr systems but under-produced in the Fe-Cu system, compared with solute composition in the alloys. The defect formation energies in both dilute and concentrated alloys, interstitial-solute binding energies, liquid diffusivities of Fe and solute atoms, and heat of mixing have been calculated for both Fe-Cr and Fe-Cu alloys. Among these factors, our analysis shows that the relative thermodynamic stability between Fe self-interstitials and solute interstitials plays the most important role on the production behaviors of solute interstitials. Next, to obtain a correlation that can quantitatively estimate the solute interstitial fraction in the Fe-based alloys, molecular dynamics simulations were conducted to simulate the cascade damage in a series of "artificial" Fe-Cr alloys with tunable binding energies between a substitutional solute (Cr) atom and a Fe self-interstitial atom (SIA). To achieve this, the Fe-Cr cross pair interaction in the interatomic potential was modified by multiplying a scaling factor so that the solute-SIA binding energy varies linearly from positive to negative values. It is found that the solute interstitial fraction has a strong correlation with the solute-SIA binding energy, and the correlation can be approximately described by a Fermi-Dirac-Distribution-like equation. The independent defect production results reported in literature are found to align well with this correlation. The correlation may be used to estimate the solute interstitial fraction in a wide range of Fe-based alloys simply based on the solute-SIA binding energy, without conducting laborious cascade simulations. Furthermore, primary damage was further investigated in Fe-tungsten (W) alloys to investigate the atomic size effect. The large difference in atomic size between Fe and W can introduce both global volume expansion and local lattice distortion in the Fe matrix. In order to understand how oversized W influences the defect production behaviors in Fe-based alloys, molecular dynamics simulations were conducted to study the primary damage in three systems at 300 K: (a) unstrained pure Fe, (b) Fe-5at.%W alloy, and (c) strained pure Fe with the same volume expansion as the Fe-5%W. The investigation of defect production behaviors include the production of Frenkel pairs, and cluster formation preference. Based on the total number of Frenkel pairs, it indicates that the global volume expansion introduced by oversized W and external strain can lead to enhanced defect production. Meanwhile, the defect cluster analysis in all three systems indicates that the local lattice distortion induced by oversized W can significantly influence the morphologies and size distributions of defect structures. Defect formation energies were calculated to interpret the different defect production behaviors in these systems. Finally, radiation can produce not only point defects but also both <100> and ½<111> type dislocation loops in pure Fe and Fe-Cr alloys. However, contradictory experimental results have been reported on how the Cr concentration affects the ratio of <100> to ½<111> dislocation loops. In this section, molecular dynamics simulations were conducted to study how Cr concentration affects the formation probability of <100> dislocation loops from overlapping cascades on a pre-existing ½<111> dislocation loop in a series of Fe-Cr alloys with 0 – 15%Cr at 300 K. Our atomistic modeling directly demonstrates that the ratio of <100> to ½<111> dislocation loops decreases with the increasing Cr concentration, which is consistent with many experimental observations. Next, independent molecular statics calculations show that the formation energies of both <100> and ½<111> dislocation loops increase with the increasing of Cr content. However, the former has a much faster increase rate than the latter, indicating that the formation of <100> loops becomes energetically more and more unfavorable than ½<111> loops as the Cr content increases. The results provide a thermodynamics-based explanation for why Cr suppresses the formation of <100> dislocation loops in Fe-Cr alloys, which can be applied to all <100> loop formation mechanisms proposed in literature. The possible effects of other alloying elements on the formation probability of <100> loops in Fe-based alloys are also discussed. / Doctor of Philosophy / Metallic alloys are important structural and cladding materials for current and future nuclear reactors. The understanding of radiation-induced damage in metallic alloys is important for the safe operation of nuclear reactors. This dissertation mainly focuses on radiation-induced primary damage in iron-based ferritic alloys. Systematic molecular dynamics simulations were conducted to study how different alloying elements influence the primary damage behaviors in iron-based alloys, including defect production behaviors and dislocation loop transformations. The relations between defect production and defect thermodynamics are also studied. First, molecular dynamics simulations were conducted to study the effects of alloying elements on the primary damage behavior in three Fe-based ferritic alloy systems (Fe-Cr, Fe-Cu, and ideal Fe-Cr), with a particular focus on the production behaviors of solute interstitials. It is found that the number ratio of solute interstitials to the total interstitials has distinct behavior in these alloys. In the Fe-Cr alloys, the ratio of Cr interstitials is much higher than the Cr concentration in the Fe-Cr alloys. By contrast, in the Fe-Cu alloys Cu interstitials are barely produced. In the ideal alloy system, the fraction of solute interstitials is close to the solute concentration in the alloys. Among all the factors we have investigated, it is found the relative thermodynamic stability between Fe self-interstitials and solute interstitials plays the most important role on affecting the production behaviors of solute interstitials. Next, to obtain a quantitative correlation that can predict the solute interstitial fraction in the Fe-based alloys, molecular dynamics simulations were conducted to simulate the cascade damage in a series of "artificial" Fe-Cr alloys with tunable binding energies between a substitutional solute (Cr) atom and a Fe self-interstitial atom (SIA). It is found that the solute interstitial fraction has a strong correlation with the solute-SIA binding energy, and the correlation can be approximately described by an analytical equation. The correlation may be used to estimate the solute interstitial fraction in a wide range of Fe-based alloys simply based on the solute-SIA binding energy, without conducting laborious cascade simulations. Furthermore, primary damage was further investigated in iron-tungsten (Fe-W) alloys. W is about 10.5% larger in atomic radius or 34.8% larger in atomic volume than Fe. The oversize W can introduce both global volume expansion and local lattice distortion in the Fe matrix. Through molecular dynamics simulations in a series of model systems for comparison, it is found that oversized W can lead to enhanced defect production. In addition, it is found that oversized W can significantly influence the morphologies and size distributions of defect clusters. Finally, molecular dynamics simulations were conducted to study how Cr concentration affects the formation probability of <100> and ½<111> dislocation loops in a series of Fe-Cr alloys. Our results demonstrate that the ratio of <100> to ½<111> dislocation loops decreases with the increasing Cr concentration, which is consistent with many experimental observations. The formation energies of both <100> and ½<111> dislocation loops indicate that the formation of <100> loops becomes energetically more and more unfavorable than ½<111> loops as the Cr content increases. The results provide a thermodynamics-based explanation for why Cr suppresses the formation of <100> dislocation loops in Fe-Cr alloys.
15

Electron microscopy study of radiation damage in tungsten and alloys

Yi, X. January 2014 (has links)
The displacement damage induced by primary recoils of fusion neutrons in tungsten and alloys has been studied with self-ion irradiations, followed by damage characterization with electron microscopy. Tungsten and alloys (≤ 5 wt.% Re, Ta, V) were implanted with 2 MeV W+ ions over a dose range of 3.3×1017 - 2.5×1019 W+m-2 at temperatures ranging from 300 to 750°C. Dislocation loops of b = ½<111> (> 60%) and b = <100> were identified, and that ½<111> loops were found more thermally stable. Among loops that were large enough for nature determination, at least 50% were found to be of interstitial type, with larger fractions in high-temperature and high-dose conditions. The diameter of loops did not exceed 20 nm, with the majority being ≤ 5 nm. The loop number density varied between 1022 and 1023 m-3. The effects of ion dose, irradiation temperature, composition and grain orientation on damage microstructure were investigated. In-situ irradiations (150 keV W+ ions) were carried out as a complement to the bulk implantations. Qualitative trends in loop size, geometry and nature with irradiation dose and temperature were similar to bulk irradiated specimens. Also, the dynamics of defects and their effects on the damage evolution were explored. In-situ annealing of irradiated thin foils was performed to investigate the thermal stability of radiation damage in tungsten. The majority of microstructure transformations were completed within 15 min of annealing. However, extended durations did favour the increase of loop size and the fraction of ½<111> loops.
16

GLAST CsI(Tl) Crystals

Bergenius, Sara January 2004 (has links)
No description available.
17

Radiation Damage in Nanostructured Metallic Films

Yu, Kaiyuan 03 October 2013 (has links)
High energy neutron and charged particle radiation cause microstructural and mechanical degradation in structural metals and alloys, such as phase segregation, void swelling, embrittlement and creep. Radiation induced damages typically limit nuclear materials to a lifetime of about 40 years. Next generation nuclear reactors require materials that can sustain over 60 - 80 years. Therefore it is of great significance to explore new materials with better radiation resistance, to design metals with favorable microstructures and to investigate their response to radiation. The goals of this thesis are to study the radiation responses of several nanostructured metallic thin film systems, including Ag/Ni multilayers, nanotwinned Ag and nanocrystalline Fe. Such systems obtain high volume fraction of boundaries, which are considered sinks to radiation induced defects. From the viewpoint of nanomechanics, it is of interest to investigate the plastic deformation mechanisms of nanostructured films, which typically show strong size dependence. By controlling the feature size (layer thickness, twin spacing and grain size), it is applicable to picture a deformation mechanism map which also provides prerequisite information for subsequent radiation hardening study. And from the viewpoint of radiation effects, it is of interest to explore the fundamentals of radiation response, to examine the microstructural and mechanical variations of irradiated nanometals and to enrich the design database. More importantly, with the assistance of in situ techniques, it is appealing to examine the defect generation, evolution, annihilation, absorption and interaction with internal interfaces (layer interfaces, twin boundaries and grain boundaries). Moreover, well-designed nanostructures can also verify the speculation that radiation induced defect density and hardening show clear size dependence. The focus of this thesis lies in the radiation response of Ag/Ni multilayers and nanotwinned Ag subjected to charged particles. The radiation effects in irradiated nanograined Fe are also investigated for comparison. Radiation responses in these nanostructured metallic films suggest that immiscible incoherent Ag/Ni multilayers are more resistant to radiation in comparison to their monolithic counterparts. Their mechanical properties and radiation response show strong layer thickness dependence in terms of radiation hardening and defect density. Coherent twin boundaries can interact with stacking fault tetrahedral and remove them effectively. Twin boundaries can actively absorb radiation induced defects and defect clusters resulting in boundary migration. Size dependence is also found in nanograins where fewer defects exhibit in films with smaller grains.
18

(U-Th)/He, U/Pb, and Radiation Damage Dating of the Rochechouart-Chassenon Impact Structure, France

January 2016 (has links)
abstract: It has been hypothesized that the ~25 km Rochechouart-Chassenon impact structure (RCIS) in the NW Massif Central, France, was formed during a Late Triassic (ca. 214 Ma) terrestrial impact event that produced a catena of several large craters. Testing this hypothesis, and assessing its possible impacts on biological evolution, requires both accurate and precise dating of candidate impact structures. Like many of these structures, the age of the RCIS is controversial because geochronological datasets yield contradictory results, even when a single isotopic system is used; for example, the two most recent 40Ar/39Ar studies of RCIS yielded statistically inconsistent dates of 201 ± 2 Ma (2σ) and 214 ± 8 Ma (2σ). While the precision offered by various geochronometers used to date impact structures varies significantly, a fair way to assess the confidence scientists might have in the accuracy of an impact age is to establish whether or not multiple chronometers yield statistically indistinguishable ages when applied to that structure. With that in mind, I have applied the (U-Th)/He, U/Pb, and radiation damage chronometers to zircons separated from two different RCIS impactites. My best estimate of the zircon (U-Th)/He age of the impact event is 191.6 ± 9.1 Ma at the 95% confidence level. U/Pb zircon dates suggest that most zircons in the RCIS target rocks were not completely reset during impact, but a subset (n = 8) of zircons appear to have crystallized from the impact melt or to have been completely reset; these zircons indicate a U/Pb impact age of 202.6 ± 5.8 Ma (95% confidence level). Zircon radiation damage dates are highly variable, indicating that the RCIS event resulted only in partial annealing of pre-impact zircon in the country rock, but a small sub-population of zircons yielded a mean date of 211 ± 13 Ma (95% confidence level). These results – all statistically indistinguishable from the previously published 40Ar/39Ar date of 201 ± 2 Ma – collectively argue that the impact age was near the presently agreed upon Triassic-Jurassic boundary. This age raises the possibility that seismite and tsunamite deposits found in the present-day British Isles may be related to the RCIS. / Dissertation/Thesis / Masters Thesis Geological Sciences 2016
19

Distribution of Light in the Human Retina under Natural Viewing Conditions

Gibert, Jorge C. 12 September 2013 (has links)
Age-related macular degeneration (AMD) is the leading cause of blindness inAmerica. The fact that AMD wreaks most of the damage in the center of the retina raises the question of whether light, integrated over long periods, is more concentrated in the macula. A method, based on eye-tracking, was developed to measure the distribution of light in the retina under natural viewing conditions. The hypothesis was that integrated over time, retinal illumination peaked in the macula. Additionally a possible relationship between age and retinal illumination was investigated. The eye tracker superimposed the subject’s gaze position on a video recorded by a scene camera. Five informed subjects were employed in feasibility tests, and 58 naïve subjects participated in 5 phases. In phase 1 the subjects viewed a gray-scale image. In phase 2, they observed a sequence of photographic images. In phase 3 they viewed a video. In phase 4, they worked on a computer; in phase 5, the subjects walked around freely. The informed subjects were instructed to gaze at bright objects in the field of view and then at dark objects. Naïve subjects were allowed to gaze freely for all phases. Using the subject’s gaze coordinates, and the video provided by the scene camera, the cumulative light distribution on the retina was calculated for ~15° around the fovea. As expected for control subjects, cumulative retinal light distributions peaked and dipped in the fovea when they gazed at bright or dark objects respectively. The light distribution maps obtained from the naïve subjects presented a tendency to peak in the macula for phases 1, 2, and 3, a consistent tendency in phase 4 and a variable tendency in phase 5. The feasibility of using an eye-tracker system to measure the distribution of light in the retina was demonstrated, thus helping to understand the role played by light exposure in the etiology of AMD. Results showed that a tendency for light to peak in the macula is a characteristic of some individuals and of certain tasks. In these situations, risk of AMD could be increased. No significant difference was observed based on age.
20

Characterization and mitigation of radiation damage on the Gaia Astrometric Field

Brown, Scott William January 2011 (has links)
In November 2012, the European Space Agency (ESA) is planning to launch Gaia, a mission designed to measure with microarcsecond accuracy the astrometric properties of over a billion stars. Microarcsecond astrometry requires extremely accurate positional measurements of individual stellar transits on the focal plane, which can be disrupted by radiation-induced Charge Transfer Inefficiency (CTI). Gaia will suffer radiation damage, impacting on the science performance, which has led to a series of Radiation Campaigns (RCs) being carried out by industry to investigate these issues. The goal of this thesis is to rigorously assess these campaigns and facilitate how to deal with CTI in the data processing. We begin in Chapter 1 by giving an overview of astrometry and photometry, introducing the concept of stellar parallax, and establishing why observing from space is paramount for performing global, absolute astrometry. As demonstrated by Hipparcos, the concept is sound. After reviewing the Gaia payload and discussing how astrometric and photometric parameters are determined in practice, we introduce the issue of radiation-induced CTI and how it may be dealt with. The on board mitigating strategies are investigated in detail in Chapter 2. Here we analyse the effects of radiation damage as a function of magnitude with and without a diffuse optical background, charge injection and the use of gates, and also discover a number of calibration issues. Some of these issues are expected to be removed during flight testing, others will have to be dealt with as part of the data processing, e.g. CCD stitches and the charge injection tail. In Chapter 3 we turn to look at the physical properties of a Gaia CCD. Using data from RC2 we probe the density of traps (i.e. damaged sites) in each pixel and, for the first time, measure the Full Well Capacity of the Supplementary Buried Channel, a part of every Gaia pixel that constrains the passage of faint signals away from the bulk of traps throughout the rest of the pixel. The Data Processing and Analysis Consortium (DPAC) is currently adopting a 'forward modelling' approach to calibrate radiation damage in the data processing. This incorporates a Charge Distortion Model (CDM), which is investigated in Chapter 4. We find that although the CDM performs well there are a number of degeneracies in the model parameters, which may be probed further by better experimental data and a more realistic model. Another way of assessing the performance of a CDM is explored in Chapter 5. Using a Monte Carlo approach we test how well the CDM can extract accurate image parameters. It is found that the CDM must be highly robust to achieve a moderate degree of accuracyand that the fitting is limited by assigning finite window sizes to the image shapes. Finally, in Chapter 6 we summarise our findings on the campaign analyses, the on-board mitigating strategies and on how well we are currently able to handle radiation damage in the data processing.

Page generated in 0.1046 seconds