• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 45
  • 27
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 255
  • 255
  • 43
  • 41
  • 40
  • 37
  • 35
  • 33
  • 33
  • 31
  • 31
  • 30
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Evaluation of plastic scintillator and high-purity germanium detectors for use in beta spectroscopy

Stuewe, Robert Brian January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
82

Determination of the photopeak detection efficiency of a HPGe detector, for volume sources, via Monte Carlo simulations.

Damon, Raphael Wesley January 2005 (has links)
The Environmental Radioactivity Laboratory (ERL) at iThemba LABS undertakes experimental work using a high purity germanium (HPGe) detector for laboratory measurements. In this study the Monte Carlo transport code, MCNPX, which is a general-purpose Monte Carlo N &minus / Particle code that extends the capabilities of the MCNP code, developed at the Los Alamos National Laboratory in New Mexico, was used. The study considers how various parameters such as (1) coincidence summing, (2) volume, (3) atomic number (Z) and (4) density, affects the absolute photopeak efficiency of the ERL&rsquo / s HPGe detector in a close geometry (Marinelli beaker) for soil, sand, KCl and liquid samples. The results from these simulations are presented here, together with an intercomparison exercise of two MC codes (MCNPX and a C++ program developed for this study) that determine the energy deposition of a point source in germanium spheres of radii 1 cm and 5 cm.<br /> <br /> A sensitivity analysis on the effect of the detector dimensions (dead layer and core of detector crystal) on the photopeak detection efficiency in a liquid sample and the effect of moisture content on the photopeak detection efficiency in sand and soil samples, was also carried out. This study has shown evidence that the dead layer of the ERL HPGe detector may be larger than stated by the manufacturer, possibly due to warming up of the detector crystal. This would result in a decrease in the photopeak efficiency of up to 8 % if the dead layer of the crystal were doubled from its original size of 0.05 cm. This study shows the need for coincidence summing correction factors for the gamma lines (911.1 keV and 968.1 keV) in the 232Th series for determining accurate activity concentrations in environmental samples. For the liquid source the gamma lines, 121.8 keV, 244.7 keV, 444.1 keV and 1085.5 keV of the 152Eu series, together with the 1173.2 keV and 1332.5 keV gamma lines of the 60Co, are particularly prone to coincidence summing. In the investigation into the effects of density and volume on the photopeak efficiency for the KCl samples, it has been found that the simulated results are in good agreement with experimental data. For the range of sample densities that are dealt with by the ERL it has been found that the drop in photopeak efficiency is less than 5 %. This study shows that the uncertainty of the KCl sample activity measurement due to the effect of different filling volumes in a Marinelli beaker is estimated in the range of 0.6 % per mm and is not expected to vary appreciably with photon energy. In the case of the effect of filling height on the efficiency for the soil sample, it was found that there is a large discrepancy in the trends of the simulated and experimental curves. This discrepancy could be a result of the use of only one sand sample in this study and therefore the homogeneity of the sample has to be investigated. The effect of atomic number has been found to be negligible for the soil and sand compositions for energies above 400 keV, however if the composition of the heavy elements is not properly considered when simulating soil and sand samples, the effect of atomic number on the absolute photopeak efficiency in the low energy (&lt / 400 keV) region can make a 14 % difference.
83

Cobalt teletherapy small field dosimetry

Nobecu, Lazola Jethro January 2017 (has links)
A research report submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in the field of Medical Physics. 2017 / Aim The aim of this research was to contribute to clinical implementation of the small field dosimetry Code of Practice (CoP) that is due to be published by the International Atomic Energy Agency (IAEA) in collaboration with the American Association of Physicists in Medicine (AAPM) (1). A 6 cm × 6 cm virtual machine-specific reference (fmsr) field was established in a clinical 60Cobalt teletherapy beam used for conventional radiotherapy at Charlotte Maxeke Johannesburg Academic Hospital, and relative output factors were measured down to a set field size of 1 cm × 1 cm using three different models of Physikalisch-Technische Werkstatten (PTW) small field ionization chambers. Materials and Methodology The measurements were all performed on a Cobalt teletherapy unit (MDS Nordion Equinox, S/N 2009) in a PTW MP3 water phantom. The small field ionization chambers that were used were a PTW 31016 3D pinpoint 0.016 cm3, a PTW 31006 pinpoint 0.015 cm3 and a PTW 31010 semiflex 0.125 cm3. A calibrated PTW 30013 Farmer 0.6 cm3 ionization chamber was used to provide traceability for the cross calibration. A ―daisy chain‖ methodology was used to perform the cross calibration in a virtual fmsr field of 6 cm × 6 cm and then establish the absolute dose rate in a 4 cm × 4 cm field. Relative output factors as a function of field size were measured with each small field ionization chamber and then compared to published results. Results Small square fields from a 60Cobalt beam were created using the secondary collimators integrated into the unit. Equivalent square fields were calculated using the profiles obtained by the three ionization chambers during scanning and were in agreement with the ones that were programmed into the console. The coincidence of the central axis of the beam and the point of measurement for each detector was determined from the beam profiles. The cross calibration and daisy chain measurements resulted in a consistent dose rate of within + 0.6% in the 4 cm × 4 cm field when measured with the four different ionization chambers. For 6 cm × 6 cm, 4 cm × 4 cm, 3 cm × 3 cm and 2 cm × 2 cm field sizes, relative output factors obtained from the uncorrected detectors’ response agreed to within + 0.8 % between the three small field ionization chambers. The variation in the 1 cm × 1 cm field size was + 8.1 %. When compared to published data, large differences in field size correction factors were obtained. Conclusion Small field dosimetry in a 60Cobalt photon beam using three different PTW small field ionization chamber models was investigated. A cross calibration in a virtual msr field was done followed by a daisy chain process to determine the dose rate in a small field. Dose profiles and relative output factors were then measured and compared. The lack of lateral charge particle equilibrium and volume averaging effect was evident when using the PTW 31010 semiflex chamber in a 1 cm × 1 cm field. The PTW 31006 pinpoint and 31016 3D pinpoint were in close agreement for field sizes down to 1 cm × 1 cm with the 3D pinpoint performing as the best detector in this study. The optimal positioning of a detector should be determined from beam profile scans and not the engineering diagrams. The PTW 31016 3D pinpoint and PTW 31006 pinpoint are recommended for the determination of output factors in small field sizes. However, field output correction factors are required for both detectors in field sizes under 2 cm × 2 cm. Small field data published in the British Journal of Radiology (BJR) Supplement 25 (2) should not be used to benchmark dosimetry in modern 60Cobalt teletherapy units. / MT 2017
84

Dosimetry comparison between treatment plans computed with Finite size pencil beam algorithm and Monte Carlo algorithm using InCise™ Multileaf collimator equipped CyberKnife® System

Unknown Date (has links)
Since the release of the Cyberknife Multileaf Collimator (CK-MLC), it has been a constant concern on the realistic dose differences computed with its early-available Finite Size Pencil Beam algorithm (FSPB) from those computed by using industry well-accepted algorithms such as the Monte Carlo (MC) dose algorithm. In this study dose disparities between FSPB and MC dose calculation algorithms for selected CK-MLC treatment plans were quantified. The dosimetry for planning target volume (PTV) and major organs at risks (OAR) was compared by calculating normalized percentage deviations (Ndev) between the two algorithms. It is found that the FSPB algorithm overestimates D95 of PTV when compared with the MC algorithm by averaging 24.0% in detached lung cases, and 15.0% in non-detached lung cases which is attributed to the absence of heterogeneity correction in the FSPB algorithm. Average dose differences are 0.3% in intracranial and 0.9% in pancreas cases. Ndev for the D95 of PTV range from 8.8% to 14.1% for the CK-MLC lung treatment plans with small field (SF ≤ 2x2cm2). Ndev is ranged from 0.5-7.0% for OARs. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
85

Potential Efficacy of the Monte Carlo Dose Calculations of 6MV Flattening Filter-Free Photon Beam of M6™ Cyberknife® System

Unknown Date (has links)
MapCheck measurements for 50 retrospective patient’s treatment plans suggested that MapCheck could be effectively employed in routine patient specific quality assurance in M6 Cyberknife with beams delivered at different treatment angles. However, these measurements also suggested that for highly intensity modulated MLC plans, field segments of width < 8 mm should further be analyzed with a modified (-4%) correction factor. Results of MC simulations of the M6 Cyberknife using the EGSnrc program for 2-5 millions of incident particles in BEAMnrc and 10-20 millions in DOSXYZnrc have shown dose uncertainties within 2% for open fields from 7.6 x 7.7 mm2 to 100 x 100 mm2. Energy and corresponding FWHM were optimized by comparing with water phantom measurements at 800 mm SAD resulting to E = 7 MeV and FWHM = 2.2 mm. Good agreement of dose profiles (within 2%) and outputs (within 3%) were found between the MC simulations and water phantom measurements for the open fields. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
86

The formulation of substitute materials with predetermined characteristics of radiation absorption and scattering

White, D. R. January 1974 (has links)
A comprehensive study of the substitute materials used in clinical radiation dosimetry has shown that many of the existing products give poor simulation for both photon and electron interactions• Those materials with known composition were classified according to the errors in their attenuation and energy absorption coefficients, stopping and angular scattering powers compared to those for the material being simulated Large discrepancies were found at low photon energies, with lung and bone substitutes giving poor results. The existing selection procedures were evaluated and two new techniques were evolved, namely, the BASIC DATA METHOD and the EXTENDED Vx) METHOD. The first procedure was based on the attenuation and absorption quantities, while the second method used an extension of the popular, but misused, concept of effective atomic number. A thorough analysis of the dependence of photon and electron interactions on atomic number was made so that the effective atomic number data could be manipulated more accurately. Computer programs based on the new procedures were written and, using a library of some 1040 materials, produced 77 new formulations including muscle, fat, lung, bone, skin, breast, liver, thyroid and air substitutes. Techniques were developed for the manufacture and quality testing of 35 of these new materials. The results of a series of 'narrow-beam photon attenuation measurements, nominally from 10 keV to 1 MeV, verified the high precision of the selection procedures and provided useful data on the contaminants present in some of the base materials. Finally, the applications of the new substitutes in practical dosimetry were investigated.
87

Estudo comparativo de protocolos tomográficos na aquisição das imagens para confecção de modelos de prototipagem / Comparative study of the tomographic protocols for making model prototype

Lima Moreno, Jorge Javier de January 2013 (has links)
A especialidade de Prótese Buco-Maxilo-Facial é responsável por reconstruções complexas da face e do crânio. Entretanto, com a utilização de impressões convencionais, é difícil se alcançar uma adequada adaptação clínica para a reabilitação do paciente. Assim, algumas vêzes, faz-se necessária a obtenção de modelos tridimensionais (3D) que reproduzam a realidade clínica. O objetivo deste estudo é comparar os protótipos obtidos com diferentes protocolos de aquisição de imagem provenientes de distintos aparelhos de tomografia computadorizada com relação à rugosidade superficial, área reconstruída e dose de exposição gerada, procurando estabelecer o mais adequado para a confecção de protótipos de crânio. Para isso, nove protótipos de um fragmento craniofacial seco foram confeccionados. A comparação entre os protótipos quanto à lisura superficial e à área reconstruída foi realizada por meio da Análise de Variância (ANOVA). Nos casos em que a avaliação indicou diferença significativa, foi aplicado como complemento o Teste de Comparações Múltiplas de Tukey. O nível de significância adotado foi de 5%. Em relação à análise de rugosidade as diferenças encontradas não demonstraram correlação com a área reconstruída. Já em relação aos diferentes protocolos, diferenças significativas foram observadas nos protótipos com respeito à área reconstruída e dose de radiação gerada. Pode-se concluir, frente aos resultados encontrados, que as imagens geradas pelos tomógrafos de feixe cônico e feixe em leque, utilizando os protocolos com as resoluções máximas estudadas, estão indicadas para a confecção de protótipos. Contudo, o que deve nortear a seleção do melhor protocolo tomográfico deve ser o propósito da indicação clínica correlacionado com o princípio ALARA (As Low As Reasonably Achievable). / Oral-maxillo-facial prosthodontics is the study of complex face and skull reconstructions. In view of the insufficient degree of adjustment of conventional impression to enable proper clinical rehabilitation, among other reasons, practitioners increasingly resort to 3D models that accurately reproduce the clinical reality. The aim of this study is to determine the optimal selection of imaging device and protocol for use in skull prototyping. The surface roughness and reconstructed area of nine prototypes obtained from a dried craniofacial specimen using different image acquisition protocols and CT devices were measured, in addition to measurements of the radiation dose potentially received by the patient. ANOVA of the surface roughness, reconstructed area and radiation dose data enabled statistical comparisons among the prototypes. Where significant differences were found, Tukey’s multiple-comparison test was conducted, using a significance level of 5%. No correlation was found between surface roughness and reconstructed area. However, significant differences in reconstructed area and radiation dose were found among the different protocols. These results support the use of images generated by CBCT or fan beam CT for the construction of prototypes, using the protocols with the highest resolution. Nevertheless, the selection of the most appropriate TC protocol should be based on the particular clinical indication along with the ALARA (as low as reasonably achievable) principle.
88

Dosimetric Optimization Method for CyberKnife Robotic RadioSurgery System Using a Memetic Algorithm

Clancey, Owen January 2011 (has links)
The CyberKnife Robotic RadioSurgery System is a robot controlled 6 MV linear accelerator based radiation delivery system with the linear accelerator attached to a six-axis robotic manipulator. Summation of all radiation beams creates a three-dimensional dose distribution within a patient. Each beam's direction, weight, and collimator size affect its contribution to the dose distribution. Hence, the CyberKnife treatment planning problem is to select a set of beams that produce a desired dose distribution. With a dose-based objective function and user-supplied weighted, dose-volume goals, a memetic algorithm is used to solve the CyberKnife treatment planning problem. Before optimization begins, two thousand radiation beams are generated, and for each beam, dose-deposition coefficients are calculated for all optimization points within the target(s) and critical structures. Then, the memetic algorithm optimizes beam weights using global and local operators and problem-specific knowledge within an evolutionary computation framework. Concurrently, beams are pared down to emphasize promising regions of the solution space and to generate clinically deliverable treatment plans. Algorithmic analysis is two-fold: parameter analysis and comparison to MultiPlan, the only commercially available CyberKnife treatment planning software. Parameter analysis optimizes and justifies parametric choices given hardware, optimization time, and treatment time constraints analogous to clinical limitations. Thereafter, MultiPlan and the memetic algorithm generate ten treatment plans and are evaluated based upon dose-volume histograms, target dose homogeneity, target dose conformality, dosimetric success rates, total beam-on time or MU, and total number of beams. Analysis shows the memetic algorithm is equivalent or superior for all metrics, and given that MultiPlan is the only available CyberKnife treatment planning software, the memetic algorithm is a state-of-the-art CyberKnife dosimetric optimization method.
89

A Dosimetric Comparison of 3D-CRT, IMRT, and SAVI HDR via NTCP/TCP and DVH Analysis of Critical Organs for Breast Cancer

Unknown Date (has links)
Accelerated Partial Breast Irradiation (APBI) is a common treatment of breast cancer with many modalities including 3D Conformal Radiation Therapy (3D-CRT), Intensity Modulated Radiation Therapy (IMRT), and High Dose Rate Brachytherapy (HDR). In this research, a retrospective analysis of patient’s data was performed to analyze the NTCP/TCP (Normal Tissue Complication Probability/Tumor Control Probability) and Dose Volume Histogram (DVH) parameters for HDR with SAVI, 3D, and IMRT and compare them focusing on critical organs such as the heart, ipsilateral lung, chest wall, ribs, and skin. TCP was 90.275%, 55.948%, and 53.369% for HDR, 3D, and IMRT respectively. The ribs were the most sensitive critical organ for all 3 modalities with a mean NTCP of 8%, 15%, and 8% for HDR, 3D, and IMRT respectively. DVH analysis showed HDR spares critical organs more than EBRT except for 2 patients receiving high doses to the ribs and chest wall. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
90

Radiotherapy x-ray dosage distribution in lung and air cavities

Wong, Tony Po Yin, University of Western Sydney, Nepean, Faculty of Science and Technology January 1993 (has links)
The effect of lateral electron disequilibrium on patient dose has been investigated. This has been achieved by dosimetry in lung and air cavity phantoms at megavoltage x-ray energies. The scatter function photon beam models for tissue inhomogeneity, such as the ETAR correction algorithm, currently implemented in commercial treatment planning systems do not predict the dose distribution accurately in many situations where lateral electron equilibrium does not exist. The lung phantom is made up of solid water slabs and lung analogue slabs. Using a thimble ionization chamber, a Markus ionization chamber and TLDs the problems of central axis dose reduction and penumbral flaring in lung for x-rays have been investigated. It is found that the ETAR correction predicts the dose at mid lung with varying degrees of accuracy depending on the field size. It was found that internal body cavities, depending on their size, experience underdose or overdose in the distal surfaces of the cavities when compared with the results predicted by an ETAR correction algorithm. Therefore, this energy is not recommended for use in situations where cavities arise / Master of Science (Hons)

Page generated in 0.1264 seconds