• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Radiation tolerance of magnetic tunnel junctions with MgO barriers

Ren, Fanghui 11 September 2014 (has links)
In the next decade, technology trends--smaller dimension, lower voltage, higher operating frequency--introduce new technical considerations and challenges for radiation effects in integrated circuits. Semiconductor based circuits and traditional dynamic random-access memories will malfunction when exposed to extreme environments, such as space and nuclear reactor. The mechanisms for radiation effect are mainly attributed to the radiation-induced charging of the oxide in a CMOS device. Spintronics is an emerging area of nanoscale electronics involving the detection and manipulation of electron spin. The magnetic tunnel junctions (MTJs), based on the intrinsic spin of the electron, can be used as the storage elements in non-volatile magnetoresistive random-access memories (MRAMs). In this effort, we study radiation tolerance of MTJs by exposing the devices in gamma and neutron radiation environment. Theoretical model for the radiation-induced defects is analyzed in this work. Experiments of the MgO-based MTJs under the conditions of pre- and post-radiation are concluded. MTJs were irradiated with gamma ray to a total dose of 10 Mrad. During the neutron irradiation, total epithermal neutron fluence up to 2.9��10�����/cm�� was obtained. The experimental results show that neither the electrical nor the magnetic properties of MTJs are affected by the radiation. / Graduation date: 2013 / Access restricted to OSU community at author's request from Sept. 11, 2012 - Sept. 11, 2014

Page generated in 0.1206 seconds