Spelling suggestions: "subject:"radio telescope -- south africa"" "subject:"radio telescope -- south affrica""
1 |
The development of SCADA control and remote access for the Indlebe Radio TelescopeDhaniram, Ajith Deoduth January 2016 (has links)
Submitted in fulfillment of the academic requirements for the Degree Master of Engineering (Electronic), Department of Electronic Engineering, Durban University of Technology, Durban, South Africa, 2016. / The proposed supervisory control and data acquisition solution is intended to gather data from all sub-systems and provide control commands related to the Indlebe Radio Telescope. Currently the control commands are executed from the command line prompt of the Skypipe software. These control commands are used to change the elevation angle of the antenna.
The supervisory control and data acquisition system will be interfaced to sub-systems namely; a programmable logic controller, a weather station, an uninterruptible power supply and a camera. It will be used to manually or automatically control the elevation angle of the antenna, includes a menu structure that allows for easy navigation to the sub-systems and allows for trending, alarming, logging and monitoring of all system parameters. The proposed system will mitigate the lack of information on the existing system.
A global system for mobile communication unit has also been installed to monitor the temperature within the Indlebe control room, detect a power failure and communicate this information to supervisors, using its short message service option.
Implementing a solution of this nature means that all data from the various sub-systems are brought together, giving a single platform to monitor data and provide manual and automatic control functionality. Problem solving, understanding and maintenance of the system will also become easier. / D
|
2 |
The SKA's the limit : on the nature of faint radio sourcesMcAlpine, Kim 14 September 2012 (has links)
From abstract: Within the next few years a large number of new and vastly more sensitive radio astronomy facilities are scheduled to come online. These new facilities will map large areas of the sky to unprecedented depths and transform radio astronomy into the leading technique for investigating the complex processes which govern the formation and evolution of galaxies. This thesis combines multi-wavelength techniques, highly relevant to future deep radio surveys, to study the evolution and properties of faint radio sources. / TeX / Adobe Acrobat 9.54 Paper Capture Plug-in
|
3 |
Measuring the RFI environment of the South African SKA siteManners, Paul John January 2007 (has links)
The Square Kilometre Array (SKA) Project is an international effort to build the world’s largest radio telescope. It will be 100 times more sensitive than any other radio telescope currently in existence and will consist of thousands of dishes placed at baselines up to 3000 km. In addition to its increased sensitivity it will operate over a very wide frequency range (current specification is 100 MHz - 22 GHz) and will use frequency bands not primarily allocated to radio astronomy. Because of this the telescope needs to be located at a site with low levels of radio frequency interference (RFI). This implies a site that is remote and away from human activity. In bidding to host the SKA, South Africa was required to conduct an RFI survey at its proposed site for a period of 12 months. Apart from this core site, where more than half the SKA dishes may potentially be deployed, the measurement of remote sites in Southern Africa was also required. To conduct measurements at these sites, three mobile measurement systems were designed and built by the South African SKA Project. The design considerations, implementation and RFI measurements recorded during this campaign will be the focus for this dissertation.
|
4 |
Development of a real-time transient analyser for the SKABotha, Antheun 04 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The extension of the Karoo Array Telescope (KAT), MeerKAT, will be the most sensitive radio telescope in the southern hemisphere until it is superseded by the completion of the Square Kilometre Array (SKA). These instruments are to be constructed in the Karoo which is an area in South-Africa that is protected against Radio Frequency Interference (RFI) by the Astronomy Geographical Advantage (AGA) act. However, the telescope is also vulnerable to self-generated interference and specialised measurement systems are required to monitor RFI levels. The development of a ReAl Time Transient AnalYser (RATTY) is described and two Experimental Development Models (XDM) are compared. The first uses a mixing philosophy, and the second direct-sampling. The selection of these models was based on the evaluation of several analogue Front-End (FE) designs. A stripline-filter design process is presented along with the results obtained for custom filters developed for the FEs. Several analyses were compared to measurements performed with one of the devices and good agreement was shown between the system characteristics. Issues regarding the Spurious Free Dynamic Range (SFDR) of the FE designs were identified in the process and measurement-corrected simulations used to predict the achievable ranges. The outcome of the XDM comparison promotes the continued development of a direct-sampling strategy to fulfil the short-term goals of the project. A static calibration procedure is demonstrated for the mixing system and implemented to account for different FE configurations. An overview of the digital and software components of the RATTY system is given and Electromagnetic Compatibility (EMC) principles are applied during the construction of both systems. / AFRIKAANSE OPSOMMING: Die finale fase van die Karoo Reeks Teleskoop (KAT), MeerKAT, sal die sensitiefste radio teleskoop in die suidelike halfrond wees. Dit sal egter oortref word deur die vierkante kilometer reeks, wat die sensitiefste radio teleskoop ter wêreld sal word. Beide instrumente sal vatbaar wees vir radiofrekwensie steurings en sal opgerig word in ‘n wet-beskermde omgewing. Die teleskope is ook vatbaar vir radiofrekwensie steurings wat deur interne stelsels opgewek kan word. Dus word gespesialiseerde meetapparate benodig om die betrokke area en substelsels van die teleskope te monitor. Die ontwikkeling van ‘n meetinstrument vir die ontleding van kort-durasie tydseine (RATTY) word beskryf en twee eksperimentele ontwikkelings modelle word vergelyk. Hierdie modelle is gebaseer op die verfyning van voorafgaande ontwerpe vir die analoog substelsel van die instrument en hierdie proses word verduidelik. Die eerste model volg ‘n menger strategie waar die tweede model direkte-monstering implementeer. ‘n Dubbel-laag, mikrostrookfilter ontwerpsproses word beskryf en die gemete resultate vir die ontwikkelde filters word bespreek. Verskeie ontledings is aangewend en vergelyk met die gemete resultate van die stelsels. Hieruit word bevredigende ooreenkomste getref. Die beperkings van die modelle, weens interne distorsie, word geïdentifiseer in dié proses en verdere skattings word gemaak d.m.v. simulasies. Die eksperimentele modelle word vergelyk en die voorkeur van ‘n direkte-monsterings stelsel word gemotiveer. Die digitale en sagteware komponente word oorsigtelik behandel. Tydens die konstruksie van die modelle word die toepassing van elektromagnetiese verenigbaarheids beginsels verduidelik. Laastens word ‘n eenvoudige kalibrasie toegepas op die menger stelsel en ‘n toepassing daarvan word behandel.
|
5 |
Variability analysis of a sample of potential southern calibration sourcesHungwe, Faith January 2009 (has links)
A considerable number of Very Long Baseline Interferometry (VLBI) surveys have been conducted in the northern hemisphere and very few in the southern hemisphere mostly because of a lack of telescopes and therefore adequate baseline coverage. Thus there is a deficit of calibrator sources in the southern hemisphere. Further, some of the most interesting astronomical objects eg. the galactic centre and the nearest galaxies (the small and large Magellanic Clouds) lie in the southern hemisphere and these require high resolution studies. With a major expansion of radio astronomy observing capability on its way in the southern hemisphere (with the two SKA (Square Kilometre Array) precursors, meerKAT (Karoo Array Telescope) and ASKAP (Australian SKA Pathfinder), leading to the SKA itself) it is clear that interferometry and VLBI in the southern hemisphere need a dense network of calibration sources at different resolutions and a range of frequencies. This work seeks to help redress this problem by presenting an analysis of 31 southern sources to help fill the gaps in the southern hemisphere calibrator distribution. We have developed a multi-parameter method of classifying these sources as calibrators. From our sample of 31 sources, we have 2 class A sources (Excellent calibrators), 16 class B sources (Good calibrators), 9 class C sources (Poor calibrators) and 4 class D sources (Unsuitable calibrators).
|
Page generated in 0.1015 seconds