• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle de la protéase mastocytaire de type 4 dans la conversion de la big-endothéline-1 en endothéline-1(1-31) chez la souris

Desbiens, Louisane January 2014 (has links)
La répression génétique complète de l’enzyme de conversion de l’endothéline-1 (ECE) chez la souris ne réduit que de 45% les taux tissulaires du puissant facteur vasoactif suggérant que d’autres enzymes protéolytiques sont impliquées dans la production dudit peptide. Nous avons récemment rapporté (Houde et al., 2013) que la protéase mastocytaire de type 4 (mMCP-4) synthétise l’ET-1 chez la souris anesthésiée in vivo et dans des extraits tissulaires in vitro. La source cellulaire principale de cette activité ECE-indépendante demeure toutefois inexplorée à ce jour. Le but de cette étude est d’évaluer la capacité de la protéase mastocytaire de type 4 (mMCP-4) recombinante, extraite des mastocytes ou in vivo chez la souris consciente, dans la conversion de la big-ET-1 en ET-1 (1-31). Notre hypothèse principale est que la mMCP-4 représente une voie de synthèse significative d’ET-1 tant in vitro que chez la souris consciente. La mMCP-4 recombinante ou extraite de mastocytes péritonéaux de souris de type sauvage, mais non pas de souris mMCP-4 KO, possède une activité de type chymotrypsine sensible à un inhibiteur spécifique des chymases, le TY-51469. De plus, par HPLC et par spectrométrie de masse (Triple-TOF), une production TY-51469 sensible d’ET-1 (1-31) à partir de son précurseur la big-ET-1 est démontrée. D’autre part, la cinétique enzymatique de la mMCP-4 contre les substrats Ang I et big-ET-1 a été déterminée (K[indice inférieur M] : 19.31 ± 3.16 et 23.43 ± 5.314 μM respectivement). Cette enzyme a une activité similaire pour ces deux substrats (k[indice inférieur cat]/K[indice inférieur M] Ang I : 7.70 X 10[indice supérieur -3] μM[indice supérieur -1] X sec[indice supérieur -1] et big-ET-1 : 2.189 X 10[indice supérieur -3] μM[indice supérieur -1] X sec[indice supérieur -1]). L’administration systémique de big-ET-1 chez des souris conscientes, instrumentées en radio-télémétrie, montre une réduction d’environ 50 à 80% de la réponse pressive du précurseur chez des souris mMCP-4 KO lorsque comparées aux souris de type sauvage. Les souris conscientes montrent une hypersensibilité très significative par rapport à la souris anesthésiée en réponse à l’ET-1 exogène (déplacement vers la gauche de la courbe dose-réponse de plus de 6 à 7 unités logarithmiques). En contraste, l’affinité apparente (ID[indice inférieur 50]) d’un antagoniste ET[indice inférieur A], l’atrasentan contre l’ET-1, est similaire chez la souris consciente ou anesthésiée (0.8236 et 0.2101 mg/kg respectivement). Cette série de résultats illustrent que la souris consciente répond beaucoup plus efficacement aux agents presseurs et ce, sans altération de l’affinité des récepteurs pour leurs ligands endogènes respectifs. Tous nos résultats nous permettent donc de conclure que la chymase recombinante, dans les mastocytes ou chez la souris consciente convertit dynamiquement la big-ET-1 en ET-1 (1-31).
2

Role of the human chymase (CMA1) in the conversion of big-endothelin-1 to endothelin-1 (1-31) / Rôle de la chymase humaine (CMA1) dans la conversion de la big-endothéline-1 en endothéline-1 (1-31)

Semaan, Walid January 2016 (has links)
Abstract : The chymase-dependant pathway responsible for converting Big ET-1 to ET-1 was established in vitro. It has only been recently, in 2009, that our group demonstrated that the conversion of Big ET-1 to ET-1 (1-31) can occur in vivo in mice (Simard et al., 2009), knowing that ET-1 (1-31) is converted to ET-1 via NEP in vivo (Fecteau et al., 2005). In addition, our laboratory demonstrated in 2013 that mMCP-4, the murine analogue of human chymase, produces ET-1 (1-31) from the Big ET-1 precursor (Houde et al. 2013). Thus far, in the literature, there are no specific characterizations of recombinant chymases (human or murine). In fact, the group of Murakami published in 1995 a study characterizing the CMA1 (human chymase) in a chymostatin-dependent fashion, using Angiotensin I as a substrate (Murakami et al., 1995). However, chymostatin is a non-specific inhibitor of chymase. It has been shown that chymostatin can inhibit elastase, an enzyme that can convert Angiotensin I to Angiotensin II (Becari et al., 2005). Based on these observations, the proposed hypothesis in the present study suggests that recombinant as well as extracted CMA1 from LUVA (human mast cell line), in addition to soluble fractions of human aortas, convert Big ET-1 into ET-1 (1-31 ) in a TY-51469 (a chymase-specific inhibitor) sensitive manner. In a second component, we studied the enzyme kinetics of CMA1 with regard to the Big ET-1 and Ang I substrate. The affinity of CMA1 against Big ET-1 was greater compared to Ang I (KM Big ET- 1: 12.55 μM and Ang I: 37.53 μM). However, CMA1 was more effective in cleaving Ang I compared to Big ET-1 (Kcat / KM Big ET-1: 6.57 x 10-5 μM-1.s-1 and Ang I: 1.8 x 10-4 ΜM-1.s- 1). In a third component involving in vivo experiments, the pressor effects of Big ET-1, ET-1 and Ang I were tested in conscious mMCP-4 KO mice compared to wild-type mice. The increase in mean arterial pressure after administration of Big ET-1 was greater in wild-type mice compared to mMCP- 4 KO mice. This effect was not observed after administration of ET-1 and / or Ang I. / Résumé : La voie de conversion de Big ET-1 en ET-1, chymase dépendante a été établie in vitro. Ce n'est que récemment, en 2009 que notre groupe a démontré que la conversion de Big ET-1 en ET-1 (1-31) peut avoir lieu in vivo chez la souris (Simard et al., 2009), sachant que ET-1 (1-31) est convertie en ET-1 via NEP in vivo (Fecteau et al., 2005). En plus, en 2013, notre laboratoire a démontré que la mMCP- 4, l'analogue murin de la chymase humaine, produit l'ET-1 (1-31) à partir du précurseur Big ET-1 (Houde et al., 2013). Jusqu'a présent, dans la littérature, on ne trouve pas de caractérisations spécifiques de chymases (humaine ou murine) recombinantes. En fait, le groupe de Murakami, en 1995, a publié une étude caractérisant, d'une façon chymostatin dépendante, la CMA1 (chymase humaine) en utilisant l'Angiotensine I comme substrat (Murakami et al., 1995). Cependant, le chymostatin est un inhibiteur non-spécifique de la chymase. Il a été démontré que le chymostatin peut inhiber l'élastase, une enzyme pouvant convertir l'Angiotensine I en Angiotensine II (Becari et al., 2005). Basé sur ces observations, l'hypothèse formulée dans la présente étude est que la CMA1 recombinante ou extraite des cellules LUVA (lignée humaine de mastocytes) ou des fractions solubles des aortes humaines convertit la Big ET-1 en ET-1 (1-31) d'une façon TY-51469 (un inhibiteur spécifique de la chymase) sensible. Dans un deuxième volet, on a étudié la cinétique enzymatique de CMA1 en vers le substrat Big ET-1 et Ang I. L’affinité de CMA1 contre la Big ET-1 était plus grande comparé à l’Ang I (KM Big ET-1 : 12.55 μM et Ang I : 37.53 μM). Cependant CMA1 était plus efficace dans le clivage de l’Ang I comparé à la Big ET-1 (Kcat/KM Big ET-1 : 6.57 x 10-5 μM-1 .s-1 et Ang I : 1.8 x 10-4 μM-1 .s-1 ). Dans un troisième volet impliquant des expériences in vivo, l’effet presseur de la Big ET-1, l’ET-1 et l’Ang I a été testé chez des souris conscientes mMCP- 4 KO comparé à des souris de type sauvage. L’augmentation de la pression artérielle moyenne a été plus importante chez les souris de type sauvage après l’administration de Big ET-1 que chez les souris mMCP-4 KO. Cet effet n’a pas été observé après l’administration d’ET-1 et/ou d’Ang I ce qui explique le rôle de la chymase dans l’effet de la conversion de Big ET-1 en ET-1 (1-31).
3

Stratégies individuelles d'hivernage chez la bécasse des bois (Scolopax rusticola) : compromis énergétiques pour la sélection de l'habitat

Duriez, Olivier 30 September 2003 (has links) (PDF)
La bécasse des bois (Scolopax rusticola L.) est une espèce d'oiseau migrateur au statut de conservation incertain, dont l'écologie et le comportement sont largement méconnus en hivernage. La bécasse, connue pour être sensible au gel, est menacée par la perte de ses habitats et une forte pression de chasse en hiver, période de vulnérabilité accrue du fait de la concentration des populations. Cette étude a pour but de mieux comprendre les stratégies comportementales d'hivernage, en combinant des approches d'éco-physiologie et d'écologie comportementale, afin de proposer des mesures de gestion et de conservation adéquates. Selon leurs besoins énergétiques, les oiseaux doivent résoudre un compromis entre s'alimenter efficacement et éviter la prédation. Ce compromis peut avoir des répercutions sur la sélection de l'habitat. Une étude des dépenses énergétiques en laboratoire (métabolisme de base et thermorégulation) et sur le terrain a montré que la bécasse était bien isolée thermiquement et avait une dépense énergétique relativement faible. La bécasse fréquente deux types d'habitat (remises) en hiver : des milieux boisés en journée (bois et haies) et des milieux agricoles la nuit. La sélection et l'utilisation de l'habitat, la survie et le budget-temps ont été étudiés sur une centaine de bécasses équipées de radio-émetteurs, pendant trois hivers en Bretagne. La sélection de l'habitat diurne s'effectue selon la richesse en vers de terre (proie favorite) et en couvert arbustif (pour la protection). La nuit, les prairies pâturées sont préférées aux cultures pour leur richesse en vers de terre. La mortalité naturelle par prédation a lieu principalement de nuit en prairie et les taux de survie suggèrent une mortalité additive due à la chasse. Le compromis entre alimentation et risque de prédation amène les individus à choisir entre différentes stratégies comportementales d'utilisation de l'espace et de gestion du budget-temps. Certains individus ne fréquentent qu'une seule remise alors que d'autres en utilisent plusieurs, de manière successive ou alternative. Le choix de la stratégie semble dépendre de l'efficacité des individus à rechercher leur nourriture et à échapper à la prédation. La fréquentation des prairies la nuit, variable selon les individus, constitue une autre réponse au compromis entre alimentation et prédation. En fonction de leurs besoins énergétiques (résultant de la température de l'air) et de leur efficacité de recherche alimentaire, les individus peuvent décider de rester en forêt la nuit pour minimiser le risque de prédation, en augmentant leur effort d'alimentation diurne. Ces résultats sont discutés en termes de perspectives scientifiques et de conservation. Des aménagements d'habitats sont proposés pour une gestion durable des populations de bécasses.

Page generated in 0.0312 seconds