• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Monte Carlo MDA determination for waste drum sources

Buchholz, Matthew A. 16 October 2001 (has links)
Past weapons production activities have resulted in mass quantities of trans-uranic waste being buried in drums at several sites in the United States. In an effort to relocate these waste drums to more permanent storage sites, Fluor Hanford has begun characterizing their contents to ensure compliance with various shipping and storage requirements. Non-destructive analysis techniques are regularly employed, among them passive radiation detection using a Canberra Gamma-Energy-Analyzer germanium detector vault. Necessary strict legal tolerances require strong quality assurance. The detectors are frequently calibrated in the traditional method with check sources, but it would be advantageous to have an estimate of system minimum detectable activity (MDA). However, any estimate is complicated by the fact that sources are distributed stochastically in the waste drums. In this study, a method was developed to predict system detector efficiency for a variety of detector configurations and drum fill materials and calculate MDA based on these efficiencies. The various system designs were modeled in Monte Carlo N-Particle Code, version 4b, to determine photopeak detection efficiency. An external code written in C programming language was used to randomly assign between one and 20 sources to volumetric regions of the waste drum. Twenty simulations were performed for each design and drum fill material combination, each time redefining the stochastically distributed source. This provided a normally distributed spectrum of 20 efficiencies for each situation. From this, mean and lower 95% confidence limit efficiencies were used to calculate MDA. The patterns among the results were then compared with values predicted by the MDA formula. Finally, an examination was made of the impact on the MDA of the system's true design in the case of single or multiple detector failure. The results indicate that this method of estimating minimum detectable activity, although costly in computing time, provides results consistent with intuitive and calculated expectations. Future work would allow easy calibration of the model to measured efficiency results. Used in coordination with physical experiments, this method may eventually prove useful in benchmarking system performance and accurately ensuring reliable waste drum characterizations. / Graduation date: 2003
2

Novel neutron detectors

Burgett, Eric Anthony 04 May 2010 (has links)
A new set of thermal neutron detectors has been developed as a near term 3He tube replacement. The zinc oxide scintillator is an ultrafast scintillator which can be doped to have performance equal to or superior to 3He tubes. Originally investigated in the early 1950s, this room temperature semiconductor has been evaluated as a thermal neutron scintillator. Zinc oxide can be doped with different nuclei to tune the band gap, improve optical clarity, and improve the thermal neutron detection efficiency. The effects of various dopant effects on the scintillation properties, materials properties, and crystal growth parameters have been analyzed. Two different growth modalities were investigated: bulk melt grown materials as well as thin film scintillators grown by metalorganic chemical vapor deposition (MOCVD). MOCVD has shown significant advantages including precise thickness control, high dopant incorporation, and epitaxial coatings of neutron target nuclei. Detector designs were modeled and simulated to design an improved thermal neutron detector using doped ZnO layers, conformal coatings and light collection improvements including Bragg reflectors and photonic crystal structures. The detectors have been tested for crystalline quality by XRD and FTIR spectroscopy, for scintillation efficiency by photo-luminescence spectroscopy, and for neutron detection efficiency by alpha and neutron radiation tests. Lastly, a novel method for improving light collection efficiency has been investigated, the creation of a photonic crystal scintillator. Here, the flow of optical light photons is controlled through an engineered structure created with the scintillator materials. This work has resulted in a novel radiation detection material for the near term replacement of 3He tubes with performance characteristics equal to or superior to that of 3He.

Page generated in 0.0769 seconds