• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Characteristics of AZO/Ag-Ti/AZO Multilayer Films

You, Chieh-chun 23 August 2010 (has links)
In this study, the tansparent conductive oxide (TCO) multilayer film AZO/Ag-Ti/AZO was fabricated with Ag-Ti alloy as conducting layer and AZO as anti-reflective material. The metal alloy was deposited by DC magnetron sputtering, and the AZO film deposition was performed by spin-coating technique and dried at suitable temperature. The thicknesses of Ag-Ti and AZO thin films were varied to fabricate AZO/Ag-Ti/AZO multilayer films. The microstructures of the multilayer films were observed by SEM and AFM. Sheet resistance was measured by using four-point probe. Optical transmittance was measured in the visible range by uv-vis spectrophotometer. The results show that as the top of AZO thickness is 50 nm, intermediate Ag-Ti metal laminated to 9 nm, and the bottom of the AZO is 35 nm, the transmittance of multilayer film AZO/Ag-Ti/AZO can reach 78.92%, and the sheet resistance is 1.86£[/¡¼. When thermal annealing process was carried out to the bottom AZO film, the worse characteristics of the transmittance and resistance of the performed multilayer film were resulted.
2

Optimization of Nanocrystalline Metal Oxides-based Gas Sensors for Hydrogen Detection

Niroula, Prakash 27 September 2022 (has links)
No description available.
3

Investigation of doped ZnO by Molecular Beam Epitaxy for n- and p-type Conductivity

Liu, Huiyong 01 January 2012 (has links)
This dissertation presents an investigation of the properties, especially the electrical properties, of doped ZnO films grown by plasma-assisted molecular beam epitaxy (MBE) under different conditions. The interest in investigating ZnO films is motivated by the potential of ZnO to replace the currently dominant ITO in industries as n-type transparent electrodes and the difficulty in achieving reliable and reproducible p-type ZnO. On the one hand, n-type ZnO heavily doped with Al or Ga (AZO or GZO) is the most promising to replace ITO due to the low cost, abundant material resources, non-toxicity , high conductivity, and high transparency. On the other hand, ZnO doped with a large-size-mismatched element of Sb (SZO) or co-doped with N and Te exhibits the possibility of achieving p-type ZnO. In this dissertation, the effects of MBE growth parameters on the properties of GZO have been investigated in detail. The ratio of oxygen to metal (Zn+Ga) was found to be critical in affecting the structural, electrical, and optical properties of GZO layers as revealed by x-ray diffraction (XRD), transmission electron microscopy (TEM), Hall measurement, photoluminescence (PL), and transmittance measurements. Highly conductive (~2×10-4 Ω-cm) and transparent GZO films (> 90% in the visible spectral range) were achieved by MBE under metal-rich conditions (reactive oxygen to incorporated Zn ratio < 1). The highly conductive and transparent GZO layers grown under optimized conditions were applied as p-side transparent electrodes in InGaN-LEDs, which exhibited many advantages over the traditional thin semi-transparent Ni/Au electrodes. The surface morphologies of GaN templates were demonstrated to be important in affecting the structural and electrical properties of GZO layers. In those highly conductive and transparent GZO layers with high-quality crystalline structures, studies revealed ionized impurity scattering being the dominant mechanism limiting the mobility in the temperature range of 15-330 K, while polar optical phonon scattering being the mechanism responsible for the temperature-dependence for T>150 K. The majority Sb ions were found to reside on Zn sites instead of O sites for lower Sb concentrations (~0.1 at.%), which can lead to a high electron concentration of above 1019 cm-3 along with a high electron mobility of 110 cm2/V-s at room temperature. The reduction in electron concentration and mobility for higher Sb concentrations (~1 at.%) was caused by the deterioration of the crystalline quality. ZnO co-doped with N and Te was also studied and the advantages of the co-doping technique and problems in achieving p-type conductivity are discussed.
4

Metal oxide nanostructures and their applications

Dar, Ghulam Nabi 25 May 2015 (has links)
Recently, researchers on nanoparticles and nanostructures has received a great deal of attention not only in the area of synthesis and characterization but also in their potential application in various high-technological applications. Nanomaterials are widely used not only for environmental and biological applications but also for electronic and sensing applications. Among various classes of nanomaterials, the metal oxide nanostructures possess particular important because of their significant physical and chemical properties which allowed them to be used for the fabrication of highly efficient nanodevices. The metal oxide nanomaterials are widely used for catalysis, sensing, and electronic devices, and so on. Due to the high-efficient applications, researchers have developed several synthesis strategies to prepare metal oxide nanostructures with tailored geometry and utilize them for a variety of applications. However, it is still desirable to prepare metal oxide nanomaterials with environment-friendly precursors and processes with varied size and morphology for their effective utilization in specific applications. This thesis focuses on the synthesis, characterizations and specific applications of two undoped and doped metal oxide nanostructures, i.e. zinc oxide (ZnO) and iron oxide (α-Fe2O3). The thesis highlights the development of novel synthesis techniques/procedures which are rapid, consume less energy and time, and are less cumbersome, more economical, especially because of the low temperature process. The other aspect of the thesis is to use the as-synthesized nanomaterials for several important applications such as sensors, photovoltaic, and photocatalysis. The thesis is divided into several chapters. Chapter 1 starts with a brief introduction of the metal oxide nanostructures and their various synthetic methods. In addition to this, a short review on the targeted applications, i.e. sensing, photovoltaic and photocatalytic, of this thesis was also discussed in this chapter. Finally, the chapter describes the objective and importance of the thesis. Chapter 2 deals with the details of the synthesis and characterization techniques used in this thesis. Two specific techniques, i.e. hydrothermal and thermal evaporation, have been used for the synthesis of various undoped and doped nanomaterials explored in this thesis. The synthesized nanomaterials were examined by variety of techniques in terms of the morphological, structural, optical, compositional and electrical properties. Moreover the prepared nanomaterials together were used for various applications such as sensing, photovoltaic and photocatalytic applications. In a word, this chapter provides all the detailed procedures for the synthesis, characterizations and applications of targeted nanomaterials in this thesis. Chapter 3 describes the main results and discussion of the thesis. This chapter is divided into several sections and each section describes the synthesis, detailed characterizations and particular application of a single metal oxide nanomaterial. Section 1 describes the growth, characterization and ammonia chemical sensing applications of well-crystalline ZnO nanopencils grown via facile and simple hydrothermal process using commonly used laboratory chemicals. Importantly, the fabricated ammonia chemical sensor exhibited ultra-high sensitivity. Section 2 demonstrates the use of ZnO balls made of intermingled nanocrystalline nanosheets for photovoltaic device application. Successful growth, characterizations and phenyl hydrazine chemical sensing applications based on Ag-doped ZnO nanoflowers was demonstrated in section 3 of this chapter. Section 4 describes the Ce-doped ZnO nanorods for the detection of hazardous chemical; hydroquinone. Section 5 exemplifies the facile growth and detailed structural and optical characterizations of In-Doped ZnO hollow spheres composed of nanosheets networks and nanocones. Finally, section 6 illustrates the utilization of α-Fe2O3 hexagonal nanoparticles for environmental remediation and smart sensor applications. Moreover the synthesized α-Fe2O3 hexagonal nanoparticles were characterized in detail in terms of their morphological, structural, compositional and optical properties. Chapter 4 briefly highlights the overall conclusion and an outlook for further investigations suggested by the work undertaken here for this thesis. / Τα τελευταία χρόνια τα νανοσωματίδια και οι νανοδομές έχουν προσελκύσει μεγάλο ερευνητικό ενδιαφέρον λόγω των σημαντικών δυνατοτήτων που προσφέρουν για εφαρμογές υψηλής τεχνολογίας. Τα νανοϋλικά χρησιμοποιούντα ευρέως τόσο για περιβαλλοντικές και βιολογικές εφαρμογές όσο και για εφαρμογές στην ηλεκτρονική και τους αισθητήρες. Μεταξύ των διάφορων κατηγοριών νανοϋλικών, οι νανοδομές μεταλλικών οξειδίων παρουσιάζουν ιδιαίτερο ενδιαφέρον λόγω των φυσικών και χημικών ιδιοτήτων τους, που τους επιτρέπουν να χρησιμοποιούνται για την κατασκευή νανοσυσκευών υψηλής απόδοσης, με χαρακτηριστικά πεδία εφαρμογών την κατάλυση, την ηλεκτρονική και τους αισθητήρες. Για τους σκοπούς αυτούς, έχει αναπτυχθεί πληθώρα μεθόδων για την σύνθεση και προετοιμασία νανοδομών μεταλλικών οξειδίων με επιθυμητές γεωμετρίες, ώστε να είναι κατάλληλα για διαφορετικές εφαρμογές. Παρόλα αυτά, εξακολουθεί να υπάρχει έντονο ενδιαφέρον για την παραγωγή τέτοιων υλικών σε διάφορα μεγέθη και μορφολογίες, με περιβαλλοντικά φιλικές μεθόδους, με απώτερο σκοπό την χρησιμοποίησή τους σε συγκεκριμένες εφαρμογές. Η παρούσα διατριβή εστιάζει στην σύνθεση, τον χαρακτηρισμό και τις εφαρμογές των νανοδομών δύο συγκεκριμένων μεταλλικών οξειδίων (ZnO και α-Fe2O3) με ή χωρίς προσμείξεις. Η διατριβή δίνει έμφαση σε νέες τεχνικές σύνθεσης, οι οποίες είναι γρήγορες, καταναλώνουν λιγότερη ενέργεια και είναι πιο οικονομικές κυρίως λόγω χαμηλότερης θερμοκρασίας επεξεργασίας. Οι δομές των νανοϋλικών που προκύπτουν, χρησιμοποιούνται σε διάφορες σημαντικές εφαρμογές, όπως είναι οι αισθητήρες, τα φωτοβολταϊκά και η φωτοκατάλυση. Η διατριβή χωρίζεται σε 4 κεφάλαια. Στο κεφάλαιο 1 δίνεται μία σύντομη εισαγωγή στις νανοδομές των μεταλλικών οξειδίων και τις διάφορες μεθόδους σύνθεσης. Παρουσιάζονται συνοπτικά τα είδη των εφαρμογών τα οποία θα αποτελέσουν αντικείμενο μελέτης και τέλος περιγράφονται οι αντικειμενικοί στόχοι και η σημασία της διατριβής. Το κεφάλαιο 2 πραγματεύεται λεπτομερώς τις τεχνικές σύνθεσης και χαρακτηρισμού που υιοθετούνται στο μεγαλύτερο μέρος της μελέτης. Συγκεκριμένα, για την σύνθεση των νανοϋλικών (με ή χωρίς προσμίξεις) χρησιμοποιούνται οι τεχνικές της υδροθερμικής και της θερμικής εξάχνωσης. Τα παραγόμενα νανοϋλικά μελετήθηκαν ως προς την σύνθεσή τους, καθώς επίσης και τις μορφολογικές, δομικές, οπτικές και ηλεκτρικές ιδιότητες. Στην συνέχεια, χρησιμοποιούνται για τα διάφορα είδη εφαρμογών που αναφέρθηκαν παραπάνω. Με άλλα λόγια, στο κεφάλαιο αυτό περιέχονται όλες οι λεπτομέρειες των διαδικασιών παραγωγής και των εφαρμογών. Το κεφάλαιο 3 περιλαμβάνει την παρουσίαση και συζήτηση των αποτελεσμάτων. Αποτελείται από διάφορες παραγράφους η κάθε μία εκ των οποίων περιγράφει την σύνθεση, τον χαρακτηρισμό και τις εφαρμογές ενός εκ των υλικών. Στην Παράγραφο 1 περιγράφονται η ανάπτυξη, ο χαρακτηρισμός των κρυσταλλικών ZnO νανομολυβδιών μέσω μίας απλής και εύκολης υδροθερμικής διαδικασίας, χρησιμοποιώντας συνηθισμένα εργαστηριακά υλικά, καθώς επίσης και η εφαρμογή τους ως χημικοί αισθητήρες αμμωνίας. Αξίζει να σημειωθεί ότι οι αισθητήρες που κατασκευάστηκαν επέδειξαν υπέρ-υψηλή ευαισθησία. Η παράγραφος 2 επιδεικνύει την χρήση ZnO σφαιρών που είναι κατασκευασμένες απο αναμιγμένα νανοκρυσταλλικά νανοφύλλα για φωτοβολταϊκές εφαρμογές. Η επιτυχής ανάπτυξη και χαρακτηρισμός ZnO νανολουλουδιών εμπλουτισμένα με Άργυρο καθώς επίσης και η χρήση τους σε εφαρμογές αισθητήρων φαινυλο-υδραζίνης παρουσιάζονται στην παράγραφο 3. Στην παράγραφο 4 περιγράφεται η χρήση ZnO νανοράβδων εμπλουτισμένων με Δημήτριο για την ανίχνευση της επικίνδυνης χημικής ουσίας υδροκινόνης. Στην Παράγραφο 5 παρουσιάζεται η ανάπτυξη και ο λεπτομερής δομικός και οπτικός χαρακτηρισμός κοίλων σφαιρών ZnO εμπλουτισμένων με Ίνδιο που αποτελούνται απο δίκτυα νανοφύλλων και νανοκώνους. Τέλος στην παράγραφο 6 περιγράφεται η χρήση εξαγωνικών νανοσωματιδίων α-Fe2O3 για περιβαλλοντική αποκατάσταση και εφαρμογές ευφυών αισθητήρων. Οι δομές αυτές χαρακτηρίστηκαν λεπτομερώς ως προς τη σύνθεση τις μορφολογικές, τις δομικές και τις οπτικές ιδιότητες. Στο κεφάλαιο 4 παρουσιάζονται τα συμπεράσματα της παρούσας διατριβής καθώς επίσης και προστάσεις για την περεταίρω διερεύνηση των υπό μελέτη συστημάτων.
5

Investigation on a change in response direction of Ga doped ZnO nanoparticles resistive sensors on exposure to NO

Tsung, Chang Che January 2012 (has links)
Semiconductor-based gas sensors have been used for a wide range of applications over the last few decades. In this thesis, sensing properties of pure ZnO and Ga doped ZnO are investigated. There are three types of tested gas species, H2, O2 and NO, and three test temperatures, 300oC, 400oC and 500oC. After measurements of response to exposure to H2 and O2, it is concluded that Ga doped ZnO and ZnO are both n-type metal oxides. In measurements of NO, two test conditions were considered, the case with background O2 (10%) in the gas flow and the case without background O2. NO can be oxidized to NO2 or reduced to N2 and O2. The resistance of Ga doped ZnO and ZnO sensors always decreases for all exposures to NO except for the case in which the Ga doped ZnO sensor was exposed to NO in a background of O2 at 500 oC. In this special case, the resistance of Ga doped ZnO actually increases during exposure to low concentrations of NO (&lt; 30 ppm). It is not clear whether the change in response direction is due to an n-p transition or different reactions between gas molecules and Ga doped ZnO. Work function measurements were therefore conducted to understand more about the electron transfer during gas exposure. The work function measurements suggest that there are probably several stages of interactions between gas molecules and Ga doped ZnO during each gas pulse exposure.
6

The physical properties of hydrogenated Co-doped ZnO thin films deposited at room temperature by RF-magnetron sputtering system

Lin, Yu-Tsung 07 September 2011 (has links)
The roles of hydrogen induced defects in pure ZnO has been studied extensively. However, in a transition metal, such as Co, doped ZnO thin films the effect of hydrogen in electric conduction and magnetic coupling is still unclear and needs further study. Recently model predicts that hydrogen can be a shallow donor as well as an agent to induce ferromagnetism coupling between two adjacent Co ions which substitute the Zn sites at room temperature in a ZnO sample with a high Co doping ratio. However, the experimental supports is rare. In this study, Co-doped(5%) ZnO films are grown by a RF-magnetron sputtering system on glass substrate at room temperature. The growth condition is fixed for RF power in 200W, working press of 70 mtorr and various mixing ratio of H2/Ar+H2 gas. The crystal structure, electric and optical properties and the influence of vacuum annealing on the samples are studied. In this research, we found that the doping of hydrogen in Co-doped ZnO thin films truly increases the electric conductivity which is proportional to the H2/(Ar+H2) ratio. When the ratio of hydrogen is low, the (002) peak taken by a Glazing Angle X-ray Diffractometer dominates, while increasing hydrogen ratio other diffraction peaks appear, indicating an enhancement of crystal structure in all directions, and grain sizes and unit cell volume decrease. From the optical transmittance measurement, it is found that the color of films turned into metallic like and the optical band gap increases linearly with H2 ratio which can be attributed to the Burstein-Moss effect that corresponds to the increasing of carriers in the conduction band by doping of H2. The transmittance data provides the information of the ratio of crystalline and amorphous, which can also be correlated to the AFM results. When the H2 ratio is higher than 30%, more crystals and larger sizes of grains were formed in the films, such that carriers did not need to pass grain boundaries so frequently and experienced less scattering that was actually improve the electric conductivity. The electric conductivity can be even improved by post annealing in H2 environment. Moreover, the Magnetic circular dichroism (MCD) measurement shows that the Co2+ ions does truly substitute on Zn sited in Td symmetry during thin film deposition. The resistance measurement as a function of temperature found the hydrogenated Co-doped thin films are semiconductor conductive. More works are needed to determine the magnetization, identify second phases and Vo by SQUID and X-ray photoelectron spectroscopy.
7

Pulsed Laser Deposition of Highly Conductive Transparent Ga-doped ZnO for Optoelectronic Device Applications

January 2011 (has links)
abstract: Transparent conductive oxides (TCOs) are used as electrodes for a number of optoelectronic devices including solar cells. Because of its superior transparent and conductive properties, indium (In) tin (Sn) oxide (ITO) has long been at the forefront for TCO research activities and high-volume product applications. However, given the limited supply of In and potential toxicity of Sn-based compounds, attention has shifted to alternative TCOs like ZnO doped with group-III elements such as Ga and Al. Employing a variety of deposition techniques, many research groups are striving to achieve resistivities below 1E-4 ohm-cm with transmittance approaching the theoretical limit over a wide spectral range. In this work, Ga-doped ZnO is deposited using pulsed laser deposition (PLD). Material properties of the films are characterized using a number of techniques. For deposition in oxygen at pressures >1 mTorr, post-deposition annealing in forming gas (FG) is required to improve conductivity. At these higher oxygen pressures, thermodynamic analysis coupled with a study using the Hall effect measurements and photoluminescence spectroscopy suggest that conductivity is limited by oxygen-related acceptor-like defects in the grains that compensate donors, effectively reducing the net carrier concentration and creating scattering centers that reduce electron mobility. Oxygen is also responsible for further suppression of conductivity by forming insulative metal oxide regions at the grain edges and oxygen-related electron traps at the grain boundaries. The hydrogen component in the FG is thought to passivate the intra-grain acceptor-like defects and improve carrier transport across these grain boundaries. Given this deleterious effect of oxygen on conductivity, depositions are performed in pure argon (Ar), i.e., the only oxygen species in the growth ambient are those ejected directly from the PLD solid source target. Ga-doped ZnO deposited in Ar at 200 °C and 10 mTorr have resistivities of 1.8E-4 ohm-cm without the need for post deposition annealing. Average transmittance of the Ga-doped films is 93% over the visible and near infrared (IR) spectral regions, but free carrier absorption is a limiting factor further into the IR. After annealing in FG at 500 °C, a 300 nm Ar film has a Haacke figure of merit of 6.61E-2 sq. ohm. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2011
8

Investigation and improvement of environmental stability of Al-doped ZnO transparent electrode / AlドープZnO透明導電膜の環境安定性の調査とその改善に関する研究

Samia Tabassum 23 January 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第18698号 / エネ博第310号 / 新制||エネ||63(附属図書館) / 31631 / 京都大学大学院エネルギー科学研究科エネルギー社会・環境科学専攻 / (主査)教授 石原 慶一, 教授 佐川 尚, 准教授 奥村 英之 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
9

Transparent Oxide Semiconductor Gate based MOSFETs for Sensor Applications

Saikumar, Ashwin Kumar 01 January 2014 (has links)
Starting from small scale laboratories to the highly sophisticated industrial facilities, monitoring and control forms the most integral part. In order to perform this continuous monitoring we require an interface, that would operate between the system and its processing conditions and in turn which facilitates us to act accordingly. This interface is called as a sensor. There are various types of sensors available which have wide range of functionality in various different fields. The use of transparent conducting oxide (TCO) in the field of sensor applications has increased and has been the subject of extensive research. Good electrical properties, good optical properties, wide band gap, portability, easy processing, and low cost has led to the extensive research on TCO for sensor applications. For this research purpose two specific types of sensor applications namely, light sensing and humidity sensing were considered. For this purpose, two sets of metal-oxide-semiconductor field effect transistors (MOSFET) with one set having transparent aluminum doped zinc oxide and the other having indium tin oxide respectively as their gate metal was fabricated. The MOSFETs were fabricated using a four level mask and tested.
10

Fabrication of Photonic Crystal Templates through Holographic Lithography and Study of their Optical and Plasmonic Properties in Aluminium Doped Zinc Oxide

George, David Ray 08 1900 (has links)
This dissertation focuses on two aspects of integrating near-infrared plasmonics with electronics with the intent of developing the platform for future photonics. The first aspect focuses on fabrication by introducing and developing a simple, single reflective optical element capable of high–throughput, large scale fabrication of micro- and nano-sized structure templates using holographic lithography. This reflective optical element is then utilized to show proof of concept in fabricating three dimensional structures in negative photoresists as well as tuning subwavelength features in two dimensional compound lattices for the fabrication of dimer and trimer antenna templates. The second aspect focuses on the study of aluminum zinc oxide (AZO), which belongs to recently popularized material class of transparent conducting oxides, capable of tunable plasmonic capabilities in the near-IR regime. Holographic lithography is used to pattern an AZO film with a square lattice array that are shown to form standing wave resonances at the interface of the AZO and the substrate. To demonstrate device level integration the final experiment utilizes AZO patterned gratings and measures the variation of diffraction efficiency as a negative bias is applied to change the AZO optical properties. Additionally efforts to understand the behavior of these structures through optical measurements is complemented with finite difference time domain simulations.

Page generated in 0.0517 seconds